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Message from the Chairs

Welcome to OSPERT’19, the 15th annual workshop on Operating Systems Platforms for Embedded Real-Time
Applications. We invite you to join us in participating in a workshop of lively discussions, exchanging ideas
about systems issues related to real-time and embedded systems.

The workshop will open with a keynote by David Haworth, discussing deterministic behavior of modern
SoCs and telling from his decade-long experience working on real-time and safety operating system development
in the automotive industry.

OSPERT19 received 9 submissions from which 6 were selected by the program commitee to be presented at
the workshop. Each paper received four individual reviews. Our special thanks go to the program committee, a
team of ten experts for volunteering their time and effort to provide useful feedback to the authors, and of course
to all the authors for their contributions and hard work.

OSPERT19 would not have been possible without the support of many people. The first thanks are due to
Martina Maggio, Steve Goddard, Gerhard Fohler and the whole ECRTS organizing team for entrusting us with
organizing OSPERT19, and for their continued support of the workshop. We would also like to thank the chairs
of prior editions of the workshop who shaped OSPERT and let it grow into the successful event that it is today.

Last, but not least, we thank you, the audience, for your participation. Through your stimulating questions
and lively interest you help to define and improve OSPERT. We hope you will enjoy this day.

The Workshop Chairs,

Adam Lackorzynski Daniel Lohmann
TU Dresden / Kernkonzept Leibniz Universität Hannover
Germany Germany

Program Committee

Marcus Völp, Université du Luxembourg
Olaf Spinczyk, Osnabrück University
Richard West, Boston University
Rudolfo Pellizzoni, University of Waterloo
Michal Sojka, Czech Technical University in Prague
Wolfgang Mauerer, OTH Regensburg
Björn Brandenburg, MPI-SWS
Peter Ulbrich, Friedrich-Alexander-Universität Erlangen-Nürnberg
Heechul Yun, University of Kansas
Jim Anderson, University of North Carolina at Chapel Hill
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Keynote Talk

Time-domain determinism using modern SoCs

David Haworth
Senior Expert, Embedded OS, Elektrobit Automotive GmbH

Deterministic behavior is important in any control system. It is essential when the control system has
implications for safety. Modern high-performance system-on-chip (SoC) devices have multi-level caches and
memory management units that can cause software functions to exhibit variable timing characteristics depending
not on the functions themselves, but on the state of the hardware due to other software functions that were
executed beforehand.

Using data from a recent project along with a historical perspective, the presentation identifies the causes of
non-deterministic behavior and shows that poor design of the time-domain behavior of the system amplifies the
effects of the non-deterministic nature of the hardware. The result is to suggest that strict control of the time
schedules of the system to avoid non-determinism in the software should reduce the effects of the hardware
characteristics as well.
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ARA: Automatic Instance-Level Analysis in
Real-Time Systems

Gerion Entrup, Benedikt Steinmeier, Christian Dietrich
Leibniz University Hannover

{entrup, dietrich}@sra.uni-hannover.de, benedikt.steinmeier@gmail.com

Abstract—Real-time control applications are usually imple-
mented by mapping their real-time model (i.e., tasks, shared
resources, and external events) onto software instances of RTOS
abstractions, such as threads, locks and ISRs. These instantiated
objects and their interactions define what actually happens on
the imperative machine; they implement the desired behavior.
However, during the lifetime of many projects, the initial real-
time model gets lost, becomes outdated, or never existed at
all, as all (further) development has been code centric: The
source code is all that we have. So developers face a situation
where further modifications of the real-time system, but also any
attempt of static RTOS tailoring, requires the extraction and
the understanding of the employed RTOS instances and their
concrete interactions from the source code.

We present ARA, a tool capable of automatically retrieving
instance-level knowledge (e.g., the instanciated threads, locks, or
ISRs) from a given (real-time) application. ARA is an RTOS-
aware static analyzer that derives, given the application source,
a graph of the employed RTOS abstractions, their concrete
instances, and how these instances interact with each other at
run time. We describe the design principles behind ARA and
validate its implementation with four example applications for
OSEK/AUTOSAR and FreeRTOS.

I. INTRODUCTION

In the domain of real-time systems, application development
often begins by mapping tasks, shared resources, and exter-
nal events onto the underlying real-time operating systems
(RTOSs) abstractions, like threads, locks, and interrupt service
routines (ISRs). This implementation later executes on the
actual machine, leaving the application code as the ground
truth that defines the system behavior. It consists of concrete
instances that interact, mediated by the RTOS, with each other.
For example, an externally-activated ISR activates the data-
processing thread after data has been received.

Since developers often use only a small part of the RTOS,
leaving a lot of functionality unused, application-specific system
specialization bears significant improvements [4], [7], [21]. At
OSPERT’18, we presented a taxonomy of specialization levels
for (real-time) system software [10]. There, we defined three
levels on which the RTOS can be specialized: (1) On the level
of abstractions, whole RTOS abstractions can be dropped if
applications do not need them. (2) On the level of instances,
we can use specialized RTOS data structures and algorithms
best suited for the known set of instances. (3) On the level of

This work was partly supported by the German Research Foundation (DFG)
under grant no. LO 1719/4-1

interactions, we specialize the RTOS with knowledge about
individual interactions, like having a single queue writer.

We demonstrated with the example of the GPSLogger1

application, an real-world real-time application, how instance-
and interaction-level knowledge can be used to further specialize
the underlying FreeRTOS in order to reduce the memory
footprint and startup time. With instance-level knowledge, we
were able to initialize all stacks, thread-control blocks, and
scheduler data structures statically, which reduced the startup
time by 10 percent compared to the unmodified system. With
interaction-level knowledge, we could embed a short running
thread directly into the activating ISR as it did not interact
with any other thread. For this, however, we had to manually
analyze the source code of the application and how it exactly
utilizes the RTOS; a tedious task. We are convinced that manual
specialization is infeasible and that an automatic process to
retrieve the used instances and their interactions is needed.

As a follow-up of our previous work, we present ARA
(Automatic Real-time system Analyzer), a tool2 that automati-
cally extracts instance-level knowledge. From the application’s
source code, ARA extracts all application–operating-system
interactions and identifies all instances of RTOS abstractions.
Furthermore, ARA retrieves the interactions between the
instances and provides further system information, like the
number of thread activations. As a result, ARA produces
theinstance graph, a data structure that captures instances as
nodes and their interaction as edges. For example, for a queue
with only one writer, the instance graph contains only a single
write edge with the queue node as target.

Thereby, ARA is not restricted to one specific RTOS.
Currently, it is able to analyze applications written against
the OSEK/AUTOSAR standard [2], an RTOS API with static
instances, and FreeRTOS [3], an RTOS with a POSIX-like
interface, where all instances are created dynamically. As both
RTOSs name their thread implementation “task”, we will use
thread and task as interchangeable terms.

The knowledge about instances and interactions cannot only
be used for specialization but also for other phases of the
development process: When new developers join a project, the
instance graph becomes a documentation artifact and provides
a fast overview of the code base, easing the introduction phase.
Since ARA calculates the instance graph in an automated way,
the time-consuming manual extraction and updating of an –
often outdated – design document is avoided.

1https://github.com/grafalex82/GPSLogger
2Available at: https://github.com/luhsra/ara
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ISR i1 {

CATEGORY = 2;

PRIORITY = 101;

SOURCE = "PORTA";

}

TASK t1 {

PRIORITY = 2;

SCHEDULE = FULL;

}

TASK t2 {

PRIORITY = 1;

SCHEDULE = FULL;

AUTOSTART = TRUE;

}

.oil BoundedBuffer bb;

ISR(i1) { // priority: 101

bb.put(readSerial());

ActivateTask(t1);

}

TASK(t1) { // priority: 2

while(data = bb.get())

handleSerial(data);

}

TASK(t2) { // priority: 1

while (true)

handleADC(readADC());

}

.cpp

List. 1: OSEK example code

Furthermore, the instance graph, which captures the actual
usage of RTOS abstractions, can act as a base for further
static analyses, like searching for misused RTOS APIs or
protocol violations. For example, interaction knowledge makes
it possible to check whether calls that take and release a lock
occur pairwise. In ARA, we already provide such checks based
on the instance graph.

Summarized, the instance graph has three benefits: It serves
as a knowledge base for further RTOS specialization. It gives
an overview of the application’s code base and becomes a living
documentation of the program. It provides knowledge to check
the application for incorrect or unusual usage of operating
system abstractions.
With this paper, we claim the following contributions:
1) We define the instance graph as a knowledge base that

captures RTOS instances and their interactions.
2) We present automated methods to statically retrieve an

instance graph from a given OSEK or FreeRTOS application.
3) We apply our methodology to four real-world applications

to validate our approach.

II. SYSTEM MODEL

The input of ARA is a statically configured (real-time)
system, so the entire application code is known at compile
time. In particular, we have chosen two (real-time) operating-
system APIs that meet this requirement: OSEK and FreeRTOS.

A. Overview of OSEK
The OSEK standard defines an interface for fixed-priority

RTOSs and has been the dominant industry standard for
automotive applications for the last two decades.

It offers two main control-flow abstractions: ISRs and
tasks. Additionally, primitives for inter-task synchronization
are provided. All instances must be declared statically in the
domain-specific OSEK Implementation Language (OIL) [18],
[19].

Listing 1 provides an example OSEK system. We see two
tasks and one ISR: task t1 waits for a notification from ISR i1

and consumes its input, while task t2 runs constantly and
handles the analog-digital converter. All instances are statically

BoundedBuffer bb;

TaskHandle_t t1, t2;

int main() {

t1 = xTaskCreate(task_1, 2);

t2 = xTaskCreate(task_2, 1);

vTaskStartScheduler();

}

isr_1 { // priority: ∞
data = readSerial();

bb.put(data);

vTaskNotifyGiveFromISR(t1);

}

task_1 { // priority: 2

while(1) {

ulTaskNotifyTake();

while(data = bb.get())

handleSerial(data);

}

}

task_2 { // priority: 1

while (true)

handleADC(readADC());

}

List. 2: FreeRTOS example code

RTOS

Task1

late: False ulTaskNotifyTake

Task2

late: False

_Z5isr_1v

late: False
vTaskNotifyGiveFromISR

main
vTaskStartScheduler

xTaskCreate

xTaskCreate

Fig. 1: Instance graph for the given example as generated by
ARA. Edge labels always belongs to the edge below them.

declared in an OIL file (printed on the left side). The scheduler
starts task t2 automatically at boot, while task t1 gets activated
by ISR i1. It is noteworthy that the used bounded buffer bb is
not an RTOS abstraction, but used as global data structure.

B. Overview of FreeRTOS
FreeRTOS is an RTOS stewarded by Amazon to use it

together with their cloud instances [11]. One of its core features
is the high number of ports to different microcontrollers.

FreeRTOS offers tasks as a control-flow abstraction and
several synchronization primitives like semaphores or queues.
Unlike OSEK, FreeRTOS does not directly offer an ISR
abstraction. Instead, it defines a special class of system calls
that can be called from an ISR and they can be recognized by
their “FromISR” suffix.

In contrast to OSEK, the FreeRTOS API is dynamic: The
application creates all OS instances at run time; either in an
initialization phase or during the continued operation. Listing 2
shows the running example using the FreeRTOS API. To foster
readability, we have left out some system-call arguments, like
the stack size or the name of the created thread (xTaskCreate()).
Compared to Listing 1, this example contains a main function
that sets up the system and starts the scheduler. FreeRTOS is
not aware of isr_1 being an ISR, but we can recognize it by
the vTaskNotifyGiveFromISR system call.

III. INSTANCE GRAPH

In this section, we will define the instance graph and will
present a method to automatically create it. An instance graph
describes all instances that will exist in the whole application
lifetime together with their (flow insensitive) interactions.
In Figure 1, we show a simple instance graph that ARA
automatically extracted from Listing 2.

2
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task_1 task_2 main isr_1

ABB7
function: task_1

ABB8

ABB4
ulTaskNotifyTake

ABB9

ABB5
BoundedBuffer::get

ABB10 ABB11

ABB6
handleSerial

ABB16
function: task_2

BB17

ABB14
readADC

ABB15
handleADC

ABB22
function: main

ABB19
xTaskCreate

ABB20
xTaskCreate

ABB21
vTaskStartScheduler

ABB26
function: isr_1

ABB23
readSerial

ABB24
BoundedBuffer::put

ABB25
vTaskNotifyGiveFromISR

Fig. 2: ICFG for the given example as generated by ARA.
System-call blocks are colored in orange (square shape),
function-call blocks are colored in green (rounded square shape),
computation-blocks are colored in blue (round shape).

The instance graph contains all mentioned instances and
their interactions as well as an additional RTOS instance. This
pseudo instance collects all interactions that do not take place
between two regular instances. Additionally, interactions that
originate from the main function reflect the system startup.
Since all “late” attributes are set to false, we know that all
instances are created before the scheduling begins.

For the construction of the instance graph, two steps are
necessary: (1) Building a system-call–aware inter-procedural
control flow graph (ICFG). (2) Creating the instance graph
based on the ICFG.

A. System-Call Aware Inter-Procedural Control Flow Graph
All interactions between instances originate in system calls;

in FreeRTOS also the dynamic instance creation is done
via system calls. Therefore, ARA traverses the ICFG of the
executed code and then interprets the influence of every system
call. For this, it first builds an system-call–centric ICFG that
abstracts from the irrelevant code parts.

First, ARA extracts the control-flow graph, which covers the
application code with its basic-block nodes. Then, it partitions
the control-flow graph into atomic basic blocks (ABBs), a
concept introduced by Scheler and Schröder-Preikschat [20], to
abstract from the application’s micro structure. As an adaptation
of the original ABB concept, ARA constructs and connects the
ABBs differently, for the whole application at once:

1) Split every basic block (BB) that contains a function or
system call. The split is done directly before and after
the function or system call. Therefore, all function and
system calls reside in their own BB.

2) Each BB gets a type assigned: system-call block, function-
call block, or computation block.

3) Merge several computation BBs into a single computation
node, if they form a single-entry-single-exit (SE-SE)
region, which can only be entered via one distinguished
entry BB and left via exactly one exit BB.

Each block constructed with this technique forms an ABB.
Afterwards, we have a local ABB-graph for each function
within the application code. By assigning a type to every
ABBs, we focus on the application logic that is visible to the
operating system and all irrelevant computation is subsumed
into computation ABBs. Interaction with the kernel is only
possible in system-call blocks. Figure 2 shows all application
ABBs derived from Listing 2.

Every system call is the intention of an interaction and gets
represented by an edge in the instance graph. Usually, the
system-call arguments identify the source and the target node
together with the exact system-call semantics. Sometimes, the
source and target are also defined by the calling instance itself
(e.g. the vTaskDelay call in FreeRTOS). In order to deduce the
system-call arguments, we perform a value analysis: Starting
from the call site, we search backwards in the function-local
def–use chains and follow the callee–caller relationship if we
hit a function beginning. With this interprocedural search, ARA
recognizes arguments that have an unambiguous value. In the
current implementation, we do not support operations, like
an addition with a constant, that change propagated values
deterministically.

B. Instance Graph Creation
With the information about the system calls and their

arguments, an interpretation of their semantics can be performed.
In the first step ARA creates all instances. Here, OSEK and
FreeRTOS are handled differently. Since OSEK requires that
all instances must be declared in the OIL file, it directly
provides information about all instances. As all instances in
FreeRTOS are created via system calls, ARA needs to find all
instance-creation system calls: It traverses the ICFG, beginning
from the system’s entry point (usually the main function).
Whenever ARA detects an instance-creation system call, it
emits a corresponding node in the instance graph. Since it is
possible that system calls are invoked in a loop or under a
condition, it can happen that the concrete number of actually
existing instances cannot be determined ahead of time. This also
applies if the system call is contained in another function that
is called in a loop or condition. ARA detects such situations,
creates exactly one instance, and labels it as being a template
for multiple, or an optional, instances.

Additionally, FreeRTOS needs a special handling for ISRs.
For all system calls that are recognized as ISR system calls,
ARA assumes that they are called within an ISR. To find
the actual function that defines the ISR, we traverse the call
hierarchy up to a root node.

In FreeRTOS, instance creation can happen anywhere in the
application. Therefore, it is important to differentiate whether
a creation takes place before or after the start of the scheduler.
Since the system entry point is executed exactly once, the code
block executed between the entry and the scheduler start gets
executed exactly once. For code within a task context, we do

3
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Serial DMA
ISR
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Thread

Logging
Queue

SD Writer
Thread

LED
Thread

Lock
Semaphore

Display
Thread

SPI DMA
ISR

Button
Thread
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Queue

I2C DMA
ISR

sleep
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wait

wakeup w
ait
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lock

lock

put

get

put get

Fig. 3: Manually derived interaction graph for GPSLogger

not have this guarantee, since the task cannot run not at all or
it can execute multiple times. Therefore, we analyze all system
calls, with respect to their call graphs, and deduce if they are
called before or after the start of the scheduler. Also, the call
to the scheduler start is a dynamic one. If this call is made
in a condition or a loop, no statement can be made. For all
instances that are created after the scheduler start, we set the
“late” attribute of the instance (see Figure 1).

After the instance creation, we analyze the interactions
between them; a step that is equal for FreeRTOS and OSEK.
For this, we traverse the ICFG of all tasks and, dependent
on the system call, create an edge between the corresponding
instances. Since we aim to find all possible interactions, the
context (loop or condition) of the system call is irrelevant for
the edge creation. Interactions whose source or target cannot
be determined are assigned to the RTOS instance.

The combination of the system-call–aware ICFG extraction
and the subsequent instance and interaction extraction is an
automated process and results in the instance graph.

IV. PROGRAM ARCHITECTURE

ARA uses LLVM [14] and reads multiple files in the
LLVM intermediate representation as input format (e.g., clang
can create these files easily). The initial control flow graph
(CFG) extraction into BBs is performed entirely in LLVM.
Additionally, analyses already implemented in LLVM, like
dominator analysis or loop information, are used. The LLVM-
specific and performance-critical parts of ARA are written in
C++, while we default to Python for fast prototyping.

V. EXPERIMENTAL VALIDATION

To validate the correctness of ARA, we create instance graphs
of four real-world applications: The I4Copter with (1) and
without (2) events (based on OSEK), the SmartPlug (3, based
on FreeRTOS), and the GPSLogger (4, based on FreeRTOS).
The generated instance graphs are rather big and can therefore
be found in the appendix.

A. I4Copter
The I4Copter [26] is a safety-critical embedded control

system (quadrotor helicopter) developed by the University of
Erlangen-Nuremberg in cooperation with Siemens Corporate
Technology. We used it as a validation base for OSEK systems.

The I4Copter exists in two variants: an implementation for
OSEK extended conformance class 1 (ECC1, with events) and
another one that runs on the simpler basic conformance class 1
(BCC1, without events). We analyzed both systems with ARA
and the instance graphs can be found in Figure 5 and Figure 7.
For the event variant, 14 tasks, 4 alarms, 11 events, and 1
resource were identified. From the variant without events, 11
tasks, 4 ISRs, and 1 resource were extracted. We showed the
results to an author of the I4Copter who confirmed the results.

B. SmartPlug

The SmartPlug3 is a hardware power switch controllable
via Wi-Fi. It runs on an ESP8266 and uses FreeRTOS to
orchestrate its tasks. The project does not provide any building
documentation and depends on several unprovided libraries. We
therefore replaced all library calls that do not perform any kind
of RTOS interaction with stubs. When analyzing the source
code, ARA found 11 tasks, 2 queues, 1 semaphore and 1 ISR,
presented in Figure 6. ARA detects 4 tasks that are always
created and 7 tasks that are created only if some condition
is met (indicated by the question mark at the creation system
call). We performed a manual validation which confirmed that
these optional tasks are created depending on a configuration
option, which is retrieved at run time by reading a file.

C. GPSLogger

The GPSLogger is a freely available application to collect
GPS information.

It runs on a “STM32 Nucleo-F103RB” evaluation board that
is equipped with a STM32F103 MCU. It is connected to a
graphical display (I2C), a GPS receiver (UART), an SD card
(SPI), and two buttons (GPIO). Due to a broken SD card library,
we had to replace the SD card operations with a printf(). In
a previous work [10], we created the instance graph manually
as shown in Figure 3. The application consists of 5 tasks, 3
ISRs, 2 blocking queues, and one binary semaphore.

The instance graph as created by ARA is shown in Fig-
ure 4. Both graphs are almost isomorph. The automatically-
derived graph contains an additional main instance to show
all creation system calls and an RTOS instance that captures
unassignable interactions. As a main difference, ARA detects
the ISR interactions but assigns them to the RTOS instance.
ARA does this as a fallback, since the correct instance that
the vTaskNotifyGiveFromISR call gets as argument is not a
global variable but derived dynamically. Also, ARA does not
detect one interaction of the “Display Task” with the RTOS
(ulTaskNotifyTake), since it occurs in a function that ARA’s
reachability analysis cannot find due to an unresolved function-
pointer call.

While we saw some specialties in the analyzed systems, we
were able to construct instance graphs from all applications.
All instance graphs are providing a compact system overview
and can be used as knowledge base for further analysis.

3https://github.com/KKoovalsky/Smartplug

4
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VI. DISCUSSION

In the previous section, we have seen how ARA can extract
interaction graphs from different unknown applications, and
we validated the results by comparing them with manually
extracted graphs and by manual code inspection. While the ARA
approach has a great potential to foster application knowledge,
its static nature has some limitations; both aspects will be
discussed in the following.

A. Limitations

The main limitation of ARA lays in limitations of its value
analysis. On the one hand, this is seen during the extraction of
argument values. Values retrieved as result of a function-pointer
call or an unambiguous assignment (e.g., in a branch) cannot
be retrieved.

On the other hand, ARA does not decide whether to take
a branch or how often to execute a loop, so the amount of
therein created instances cannot be retrieved. In the current
implementation, ARA detects these cases and marks the result
appropriately.

In the future, we want improve the recognition by using
already implemented compiler techniques such as dead-code
elimination and constant folding to remove branches or loop
unrolling to determine loop iterations. Another known technique
is symbolic execution, which, however, comes with high
costs [5]. Nevertheless, we believe that most embedded systems,
while programmed against a dynamic API, are rather static in
their OS interactions. Mostly, tasks are defined in some kind
of main function before the actual scheduler starts and system
calls only interpret constant values or global arguments. The
analyzed real-world systems are developed this way, except for
the SmartPlug, where one task acts as a configuration instance
that creates several other tasks. Nevertheless, ARA recognizes
this creations but cannot make a statement about the exact
amount of instances.

ARA performs a reachability analysis, beginning at the
system and task entry points to decide whether an interaction
is executed or not. In this analysis, ARA does not resolve any
function pointers. In the current implementation, ARA stops the
traversal at this point, resulting in possibly unanalyzed system-
calls, if they are only reachable via a function pointer. This
can lead to unrecognized instances and missing interactions.
In the specialization use case unrecognized instances lead to
a more generic implementation and thus only to a weaker
specialization. However, missing interactions can lead to the
selection of the wrong specialization for the corresponding
instances and, thus, provoke incorrect system behavior. One
way to solve this problem is to retrieve a restricted set of
possible call targets by comparing function signatures. A better
value analysis will further limit the call-target set of a function
pointer. We want to address this limitation in our future work.

The described limitations are inherent for static analysis.
Tracing an actual run of the system would circumvent these
problems. However, tracing does not detect dynamically uncre-
ated instances. This can be seen in the SmartPlug where on an
actual run only a subset of all tasks, which are found by static

analysis, is created due to dynamic configuration. We plan to
extend ARA to additionally support traces.

When we analyzed the real-world applications, we saw
different code qualities. Especially the GPSLogger seems like
a hobby project that was developed incrementally without a
real-time system model. For example, the source base contains
two copies of FreeRTOS; both of them are used. Additionally,
the analyzed applications are rather small in its code size. We
see a threat to validity of ARA’s analysis results, that we want
to address in our future work with the evaluation of more and
larger applications.

ARA considers only interactions that involve the RTOS. For
example, ARA does not detect an communication via shared
memory like the bounded buffer in Listing 1. Since our main
goal is a knowledge gain for RTOS specialization, this is not a
limitation. While ARA currently only supports FreeRTOS and
OSEK, we plan to extend it to more RTOS APIs.

B. Advantages
Application overview is given by a good visualization of the
system composition. This is on the one hand useful to get
an overview of the developer’s own application as seen by a
machine. Often, applications are developed with a program-
design model in mind. The instance graph can be used as
visualization of this model and prove that it was actually
implemented. If the model gets outdated in further development,
ARA can serve as a tool to retrieve it in an automated manner.
On the other hand, the instance graph is useful as program-
design documentation for external developers. Especially for big
code bases, it provides the unexperienced developer a compact
overview about system composition so she is able to quickly
find parts in the source code that are responsible for an observed
behavior. ARA is a tool to generate this design document in
an automated manner and can, therefore, be integrated into the
continuous integration (CI).
Application verification is provided by automatic checks.
With knowledge about used operating system (OS) abstractions,
ARA is able to check for their correct usage. To demonstrate
this, we have implemented two verifications in ARA. The first
one checks if an ISR in FreeRTOS only uses ISR-enabled
system calls. The second one verifies if system calls to enter
and exit a critical region always occur pairwise. Automatic
lock verification is a topic of ongoing research [13], [16], [15],
[9]. Our approach does not try to verify correct lock usage,
but it is able to detect lock misuse. Given the already retrieved
instance graph, these checks are easy to implement. Again, this
functionality of ARA is useful for a CI process.
Knowledge gain for specialization is achieved in an auto-
mated manner. Instance knowledge at compile time can
be used to create a specialized variant of the underlying
RTOS. For example, instances can be statically initialized and
preallocated at compile time. More efficient data structures
(like arrays instead of lists) can be used when the number of
instances is known. Algorithms can be improved when the
communicating instances are known beforehand. For example,
queue synchronization can be reduced if only one producer
and one consumer is detected.
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VII. RELATED WORK

There are several other solutions to statically extract the
application knowledge that is required to specialize the RTOS.
Bertran et al. [4] track – based on the binary application image
– those control system that cross the system-call boundary and
eliminate dead system- and library calls from Linux and L4.
However, they do not extract instance knowledge or try to
interpret the system calls. In [7], we built the global control
flow graph (GCFG), which we used for excessive system-call
specialization. However, the GCFG captures the system only
on a flow-sensitive interaction level (instead of the feature and
instance level), proved to be computationally more expensive
than ARA, and was only implemented for OSEK. Schirmeier
et al. [21] transform the CFG in Kripke structures to be able
to apply model checking in computational temporal logic
(CTL) for patterns that lead to an automatic OS configuration.
They apply the method to eCos and its powerful configuration
framework. While CTL may be usable to extract instances, the
authors aim to use eCos’ existing configuration framework and
do not try to extract instances or interactions.

A classical approach to document a program structure
are UML diagrams. With StarUML [22], BOUML [6], and
ArgoUML [1] several tools exist to automate the diagram
generation by performing a static analysis on the application
source code. Class diagrams are another program-structure vi-
sualization, as generated by Structurizr [24], Structure101 [23],
NDepend [17], or Doxygen [8] in an automated fashion.
However, all these tools extract no instance knowledge, are
control-flow agnostic, and do not consider the RTOS.

Especially for the RTOS domain, several tools like Grasp [12]
and Tracealyzer [25] exist that retrieve information from the
real-time system to show timing behavior of RTOS instances.
Therefore, they build an implicit form of an instance graph but
with focus on actual execution times. Nevertheless, they use
tracing information to retrieve instances and timing behavior
and do not perform any form of static analysis. As a result,
they only retrieve all actual executed instances. Instances that
are defined in the application but not executed in the trace are
not retrieved.

VIII. CONCLUSION

In this paper, we have presented the instance graph, which
is capable of describing all instances of RTOS abstractions
together with their interactions. With ARA, we presented a tool
to automatically generate an instance graph for applications
written against the FreeRTOS or the OSEK API.

We validated the correctness of ARA with four real-world
applications and compared the automatically extracted instances
graphs to manually extracted knowledge. While having limi-
tations, mainly stemming from the value analysis, ARA was
able to recognize all instances and most of its interactions.
We have discussed the utility of the instance graph to assist
programmers during the application development, to provide
an knowledge base for further static analyses, and to foster
further RTOS specialization.
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IX. APPENDIX

In the following, the instance graphs of all tested real-world examples are shown. We decided to present them here exactly as
generated by ARA. Due to their size, they are probably difficult to read on printed paper but, of course, zoomable in digital form.
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Abstract—From an operating system’s perspective, task mi-
gration is a potent instrument to exploit multi-core processors.
Like full preemption, full migration is particularly advantageous
as it allows the scheduler to relocate tasks at arbitrary times
between cores. However, in real-time systems, migration is
accompanied by a tremendous drawback: poor predictability and
thus inevitable overapproximations in the worst-case execution-
time analysis. This is due to the non-constant size of the tasks’
resident set and the costs associated with its transfer between
cores. As a result, migration is banned in many real-time
systems, regressing the developer to a static allocation of tasks
to cores with disadvantageous effects on the overall utilization
and schedulability.

In this paper, we tackle the shortcomings of full migration in
real-time systems by reducing the associated costs and increasing
its predictability. Our approach is to analyze a task’s source
code to identify beneficial migration points considering the
size of scheduling units and the associated migration costs.
Consequently, we can do both: generate schedules that benefit
from static migration as well as provide information about
advantageous migration points to dynamic scheduling, making
full migration more predictable. Our experiments show improved
schedulability and a reduction in transfer size of up to 76 percent.

I. INTRODUCTION

To date, real-time scheduling on multi-core systems while
fully utilizing the cores is a challenging task. Initially, static
allocation of tasks to cores suffers from the well-known
Dhall’s effect [1]: adverse utilization characteristics of tasks
may lead to poor overall utilization up to the point where
the system becomes unschedulable. Consider for example,
a task set comprising three tasks τa, τb, and τc, where τa
and τb have a processor utilization of 70 percent and τc of
40 percent. Allocating this task set on a system with two cores
is infeasible. This problem of static allocation can be overcome
by dynamic allocation and the possibility to migrate work
between different cores, as it enables to spread work among
cores. Such migration is conceptually possible at multiple
levels of granularity: task, job, and instruction level [2]. While
the former two are relatively easy to implement, they are
incapable of solving the general issue. They still fail to find a
feasible schedule for the previous example, as the infeasibility
stems from the adversly large utilization on task and job level.
Migration on instruction level, on the other hand, succeeds to
utilize the system fully and thus to find a feasible schedule,
as it allows split up a job and distribute its utilization across
cores. An abundance of multi-core scheduling algorithms [3]
rely on such fine-grained migration to exploit this potential.

However, migration comes at considerable costs in practice,
as the operating system not only has to preempt a task but also

transfer its resident set (i.e., active working set) between differ-
ent core-local memories. In contrast to core-local preemption,
these costs are non-constant and highly dependent on the
point of migration [4]. Thus, migration at the instruction level
carries the risk to migrate at adverse points that are associated
with high overheads. Choosing an inapt migration point may
even jeopardize deadline tardiness and feasibility [5]. Even
worse, worst-case execution time (WCET) analysis is forced
to assume a pessimistic bound on the migration cost. To
conserve predictability, migration is thus banned in many real-
time operating systems, restricting the developer to a static
allocation of tasks to cores with disadvantageous effects on
the overall utilization and schedulability.

Without resorting to migration, however, the granularity of
scheduling units is a crucial factor for the overall schedu-
lability of a given system as it is typically easier to find
a valid schedule for smaller scheduling units. For runtime
migration, only the direct cost of the migration mechanism
itself can be influenced by the operating systems. However, the
fundamental issue is in the variability of the indirect cost, that
is resident-set size. Consequently, we identified the following
two major challenges to overcome the predictability issues and
to boost migration in real-time systems.

A. Challenge # 1: Adverse Size of Scheduling Units

Considering our previous example, finding a schedule is
infeasible only because of the adverse granularity of the
three tasks although, in theory, the overall utilization is not
exceeded. Splitting tasks into smaller scheduling units solves
the problem, for example, by splitting task τc into two parts
with a utilizaton of less than 30 percent each. However, cutting
code to match a certain scheduling granularity is a tedious
process as the execution time is a non-functional property and
thus hard to correlate with the source code. The fundamental
challenge is to identify split points that are valid for all
possible execution paths across branches and preserve the
task’s functional properties.

Our Approach: We perform static analysis on the sys-
tem at compile time to identify potential split points with
the desired granularity based on execution cost estimations.
Additionally, we ensure that program semantics are preserved
across all control-flow branches. We leverage heuristic es-
timation of execution cost to keep the analysis overhead
manageable. Subsequently, a target-specific WCET analysis
can verify the granularity of the scheduling units.
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B. Challenge # 2: Minimize Migration Overhead

Choosing scheduling units only by size still suffers from the
same issues as instruction-level migration, namely potentially
high migration cost. A split point that results in optimally
sized scheduling units may coincide with an unfavorably large
resident set. In the worst case, the additional migration cost
may again jeopardize the schedulability gained by changing
the granularity in the first place. The challenge is in the
identification of split points that benefit both aspects.

Our Approach: We optimize both the scheduling-unit size
and the associated migration cost simultaneously by extending
the search for split point candidates to the vicinity of the
optimal scheduling-unit granularity. This way, we are able to
choose split points with beneficial resident-set sizes.

C. Contribution and Paper Structure

In this paper, we present an approach to facilitate the use
of migration in real-time systems by reducing the associated
costs and increasing its predictability. Our toolchain allows for
automated static analysis of existing source code to identify
beneficial migration points by simultaneously considering both
the size of scheduling units and the associated migration
costs. We transform the control-flow graph into a split-point
graph that models scheduling units and holds information
on potential split points and their costs. Consequently, our
analysis can be used to both generate static schedules with
migration as well as provide hints on beneficial migration
points to dynamic scheduling thus supporting online migration.

The remainder of this paper is structured as follows: In
Section II, we present our approach to solve the aforemen-
tioned challenges. Section III gives an overview of the imple-
mentation of our prototype, which is evaluated in Section IV.
Section V outlines related work in the context of job migration
and Section VI concludes.

II. APPROACH

In this section, we detail our approach to the identification
of beneficial migration points by static code analysis. We,
therefore, first introduce the system model and fundamental
assumptions that we demand and give an overview of the
general concept of our analysis. Finally, we detail the handling
of loops and branches, which are in particular challenging and
require specific cutting schemes.

A. System Model and Assumptions

We consider a real-time system with m cores that allows
full preemption and full migration. We define the latter to
permit migration at each instruction of the application code
but to prohibit migration during the execution of system
calls and other operating-system code. A set τ of n sporadic
tasks with occurrence rate Ti is scheduled on m processors.
Each task τi contains a set of l scheduling units J (a.k.a.
jobs) and has a processor utilisation Ui. The number of tasks
n, the period and their respective worst-case execution time
(WCET) Ci determine the theoretical schedulability. A system
is theoretically schedulable on m cores if the total utilization

of all tasks is less or equal than the number of cores m, i.e.,
if the following equation holds:

n∑

i=1

Ui =

n∑

i=1

Ci
Ti
≤ m with Ci =

l∑

k=1

CJki (1)

Here, CJki denotes the WCET of the scheduling unit k of
τi. We extend the inequality by the overhead α to express the
(data transfer) costs associated with migration for each task:

n∑

i=1

Ci + αi
Ti

≤ m (2)

As a non-functional requirement, we assume that upper
bounds on the number of iterations for all loops are given.
We further assume a RISC processor without out-of-order ex-
ecution as the target and that cache-related overhead is already
covered by the overapproximations required to incorporate
preemption effects and delays.

With the notion of a resident set, we refer to the currently
active (i.e., alive) part of a process’s working set; the latter
is often used interchangeably in the literature. That is, for
example, local and global variables or the state of the stack.
We restrict this definition to comprise only core-local data and
assume that all other data is globally accessible.

B. General Concept

We leverage static code analysis to identify interactions
with the operating system’s scheduler, that is system calls,
from the tasks’ source code. By incorporating knowledge
about the semantics of the targeted operating system and its
scheduling, we can thereof derive all truly existing scheduling
units and their respective control-flow graphs; irrespective of
the development model (e.g., process or run-to-completion)
and style the developer pursued.

We further infer all additional information that is required
to identify potential split points. First and foremost, this is
the active resident set at all times. We, therefore, perform
a liveness analysis of all local variables and compute the
resident-set size for every instruction. Furthermore, we per-
form a heuristic timing analysis of all nodes to estimate their
size in terms of execution time. Finally, the control-flow graphs
are transformed into split-point graphs that hold all additional
information. In this graph, edges correspond to the possible
split points, and nodes represent all instructions between them.

The identification of split points consecutively transforms
the split-point graph such that all nodes are at or below a
predefined target size at minimal migration costs. To achieve
this, we assess each possible split point according to two cri-
teria: distance (δ) to the intrinsic split point and the associated
resident-set size (ω), that is migration costs. Figure 1 illustrates
the interplay of these two parameters. Recall that we assume
global variables to be globally accessible from all cores.

We define the intrinsic split-point as the point, where
the estimated worst-case execution time since the beginning
of the scheduling unit, or, equivalently, the last split point,
approximately equals the target scheduling-unit size. In our
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  = 0;int32_t x
uint16_t y = foo();

 (   = 0;  < 5; ++) {for uint8_t i i i
   +=  * bar[ ];x y i
}

  =  * 4711; int64_t z x
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   += baz[ ];z j
}
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Figure 1: Working set and lifespan of automatic vari-
ables, showcasing the need to simultaneously consider both
scheduling-unit size and resident-set size to obtain optimal
split points with minimal overhead.

example, splitting between lines seven and eight would lead to
optimal size. However, in this case, we suffer from significant
migration costs, as j and z have to be transferred.

We, therefore, employ the size of the resident set at a
given program point to further consider the migration cost.
We acquire ω by a liveness analysis to identify all local
variables that are referencable from a given program point.
In the example in Figure 1, the state is minimal between lines
five and six, where just the intermediate result stored in x has
to be transferred.

By simultaneously optimizing both criteria, we are, in gen-
eral, able to obtain best-suited points for cutting the scheduling
unit locally. However, we have to assess possible split points
also from a global point of view. Only by that, we can
guarantee that the resulting cut is both correct and suitable
in cases where different possibilities of program flow exist,
for example in branches and loops. Therefore, we search for
a minimal cut on the split-point graph to find split points in
all branches that result in global split points associated with
minimal migration costs.

In the following sections, we give further insights on how
our approach handles specific program constructs.

C. Splitting Branches

Assessing a sequential control flow according to our criteria
only requires a straightforward assessment of all split-point
candidates and selection of the optimal one. In contrast,
branches are harder to split as we need to maintain global
relations between split points in all branches belonging to
the same conditional construct to preserve program semantics.
A further challenge is to avoid an increase in the overall
WCET by an unbalanced subdivision of branches. Figure 2
illustrates the underlying problem: For the original, uncut
branch (left), we have a WCET of Cuncut = 205. In this
example, the liveness analysis reveals minimal migration costs
at the beginning of the true and the end of the false
branch. Consequently, the cut scheduling units SUA and SUB
contain the greater part of the true and false branches
respectively. Ultimately, the WCET analysis suffers from a
pessimistic overapproximation in both branches yielding an
overall WCET of Ccut = 350.
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Figure 2: Bloated WCET estimate due to an unbalanced cut,
caused by a branch-local optimization of split points.

This unfavorable behavior is rooted in the branch-local
optimization of the migration cost. We solve this issue by
considering both criteria (i.e., size and migration cost) simul-
taneously across all branches to find globally suitable split
points that lead to a balanced cut even for nested branches.
Throughout this paper, we call this a horizontal cut.

D. Splitting Loops
Further measures are required for the splitting of loops as

splitting inside the loop body is entirely ineffective as the
related costs outweigh the benefits. Additionally, an individual
loop iteration typically contributes only a small fraction to
the loop’s overall WCET. Therefore, we subdivide loops at
a granularity of whole iterations using index set splitting [6]
to separate the index range of a loop into smaller subranges
until the individual execution time fits the targeted size. As
the resident-set size is usually the same for all loop iterations,
we consider all possible split points as equally suited1.

In general, we require an upper bound on the number of loop
iterations itermax to estimate a loop’s overall execution time,
which is commonly available knowledge in (safety-critical)
real-time systems. Considering the WCET Cloop of a single
loop iteration, we can derive the number of iterations iterfit
required to fit the target size (Ctarget) of the scheduling units:

iterfit = dCtarget/Cloope (3)

The number of required cuts ncut results from the total
number of iterations itermax and the fitting size iterfit:

ncut = bitermax/iterfitc (4)

By splitting loops by their index range, we obtain suitable
scheduling-unit size while avoiding the potentially disadvan-
tageous effects of splitting the loop body.

In summary, by employing our concept of split-point graphs,
we can successfully subdivide tasks into scheduling units of
smaller size. We can efficiently cut both composite branches
and loops. Liveness analysis allows us to identify split points
with minimal migration costs. Thereby, we improve schedula-
bility in multi-core settings and reduce the otherwise inevitable
overapproximation of indirect migration overheads.

1Theoretically, loop constructs exist that violate this assumption. In that
case, we overapproximate the resident-set size by the overall maximum.
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Figure 3: Schematic depiction of the split procedure for
if-then-else branches.

III. IMPLEMENTATION

We based the implementation of our approach on the
Real-Time Systems Compiler (RTSC) [7]. The RTSC is an
LLVM-based [8] toolchain that’s characteristic feature is the
automated manipulation of non-functional properties of real-
time systems. For this purpose, the RTSC employs static code
analysis to transform a given source system into an OS-
agnostic intermediate representation, which in turn is based
on the LLVM intermediate representation (LLVM-IR). As a
result of this, the application’s program-flow is represented as
single-entry single-exit regions2 between system calls, that is
scheduling units that do not affect the internal state of the OS.
Based on this intermediate representation, the RTSC facilitates
the systematic manipulation of non-functional properties. For
example, a conversion from event to time-triggered execution.
Currently, the RTSC supports various real-time operating
systems with its front and backends respectively [10], [11].

A. Split-Point Graph Generation

Currently, only the application code is part of the inter-
mediate system representation. Thus, with our prototype, we
focused on the identification of suitable split point within the
application, which is the main subject of migration. Conceptu-
ally, however, our approach can be extended to the operating-
system code, which we, however, consider as future work. To
identify optimal split points, we need to derive the split-point
graph from the intermediate representation and enrich it with
execution time estimates and resident-set sizes.

In a first step, we perform a liveness analysis of all variables
on the intermediate representation of LLVM. The results of
this analysis provide information about the size of the resident-
set size ω, which we then utilize as one optimization criterion.

In a second step, we estimate the execution time per
instruction in the LLVM representation3 to determine the
distance δ from the intrinsic split points for each instruction.
For this estimation, we rely on a simple model of the execution
platform and assign execution costs to each instruction, giving
more weight to classes of instruction, which are likely to be
more expensive, for example, load and store instructions. This
heuristic oversimplifies the process of modeling the WCET
but is a reasonable approximation at the abstraction level of
the intermediate representation. Deriving better estimates for
the execution time is beyond the scope of this paper.

2A concept introduced as Atomic Basic Blocks (ABB) in [9].
3We inline all function calls to ease execution time estimation.

B. Split Point Optimization

With the foundations laid, we can assess the local aptness
of potential split points by a cost function that combines our
two criteria with appropriate weights as shown in Equation 5.
δ thereby denotes the distance to the intrinsic scheduling
granularity, ω the migration costs in bits, and wδ and wω
the respective weights. Using complex weight functions, the
interaction of weights and their effect on the assessment of
split points can be influenced, for example, to exponentially
punish an increasing distance δ. For simplicity, we resort to a
constant factor of one for both weights in our prototype:

wδ · δ + wω · ω (5)

In the case of sequential code, we can directly choose the
point that is most suitable according to our cost function.
However, as outlined in Section II, in the presence of loops
and branches, we have to perform the global assessment of
all branches to ensure a horizontal cut. For the search for the
minimal horizontal cut among the split-point candidates in dif-
ferent branches, we apply the Ford-Fulkersson algorithm [12]
on the split-point graph. After having identified a globally
suitable split point across all branches, we then perform the
actual splitting in if-then-else branches as depicted in
Figure 3. At the split point in each branch, we cut the existing
basic block (e.g., BB2) in two parts by inserting instructions
around the split point. In the first part (e.g. BB2a), we set a
flag indicating we executed that branch and jump to a newly
created basic block terminating the first scheduling unit (BB5).
In the second part (e.g., BB2b), we introduce a label which we
can use as a jump target from the newly created entry basic
block (BB6) of the second scheduling unit.

For loops, we use the procedure shown at the example in
Listings 1 and 2. Using the method outlined in Section II-D,
we identify the number of loop iterations iterfit that should
constitute one scheduling unit (5 in the example). We then
split the loop by duplicating the body and adjusting the loop
condition to preserve the program semantics. For this, we
introduce a counter for the split loops (sCo) that has to be less
than iterfit for the loop condition to be evaluated to true.

IV. EVALUATION

To assess our approach’s ability to cope with the initial two
challenges, its real-world usability ,and runtime, we conducted
two experiments and one theoretical consideration.

1 LOOP_Bound(x:10);
2 for(int i = 0;
3 i < x; ++i)
4 {
5 ....
6 }

Listing 1: Loop in the
original state.

1 int i = 0, C = 5;
2 for(; i < x && C; ++i) {
3 --C;
4 ....
5 }
6 ....
7 C = 5;
8 for(; i < x && C; ++i) {
9 --C;

10 ....
11 }

Listing 2: Loop after the
splitting procedure.
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A. Runtime Overheads of Splitting

Since splitting of scheduling units is realised by the insertion
of specific instructions, e.g., jump statements, at the designated
cut point, it comes with an additional overhead. This overhead
differs depending on the type of control flow. In the case
of sequential control flow, we insert only one instruction per
cut. The number of additional instructions for the splitting
of branches i+if depends on the number of cuts ncut and
the number of branches nbranch. The first term of the sum
shown in Equation 6 refers to instructions for setting a flag
marking the active branch. The second term represents the
jump instruction that terminates the first scheduling unit and
the third term contains instructions for checking the stored flag
and proceeding with the correct branch.

i+if = ncut ∗ nbranch ∗ 2 + ncut ∗ 1 + ncut ∗ 3 (6)

Splitting loops adds i+loop instructions to the instructions
of the original loops. The first term of Equation 7 refers to
instructions necessary to maintain an additional counter for
the iterations planned in each scheduling unit of the loop.
The second term corresponds to the end of each scheduling
unit at a split point and comprises instructions for exiting the
scheduling unit and resetting the additional iteration counter.
The third term contains instructions to decide whether to
execute the following part of the loop after each split point.

i+loop = (ncut + 1) ∗ 5 + ncut ∗ 2 + ncut ∗ 3 (7)

The runtime overhead introduced by splitting is therefore
minor compared to the execution time of most scheduling
units. Exceptions are the extreme cases of conditional con-
structs with a large number of branches and loops with small
bodies. However, we can detect and avoid these cases in the
search for suitable split points, which we consider future work.

B. Schedulability of Synthetic Benchmarks

We assessed the validity of our approach concerning schedu-
lability by generating 12000 synthetic benchmark systems with
a utilization between 3.5 and 4.0 comprising few OSEK-
compliant tasks. We tried to find a feasible allocation and
schedule for each task set on a system with four processor
cores by employing specialized versions [13] of the branch-
and-bound allocation algorithm and the minimax scheduling
algorithm, both by Peng et al. [14]. Figure 4 shows the
achieved relative schedulability of the generated task sets both
with (left bars) and without (right bars) automated splitting of
scheduling units. The results show that the relative schedula-
bility increases through splitting, leading to 70 percent more
schedulable task sets for the highest utilization. This confirms
the general capability of our approach to employ migration
automatically to achieve better utilization.

C. Minimize Migration Costs

To evaluate our approach regarding Challenge # 2, we
analyzed possible splitting points in real-world benchmarks
taken from the TACLeBench suite [15]. For this, we converted
the benchmarks to OSEK tasks and created OSEK systems
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Figure 4: Relative schedulability of generated task sets
achieved with (left bars) and without (right bars) splitting of
scheduling units, showing an increased schedulability reached
through automated splitting.

comprising one benchmark task and two load tasks. We
adjusted the amount of load to achieve a system which is
unschedulable on two cores without migration to force our
RTSC extension to split the benchmark task. We recorded the
worst-case dynamic migration costs for every instruction as
well as the statically composed migration costs of split points
that comprise all branches of the horizontal cut. Table I shows
an overview of both the worst-case migration cost observed
in all possible split-point candidates as well as the migration
cost of the split point chosen by our approach for several
TACLeBench benchmarks we analyzed. The costs represent
the size of the resident set in bits based on LLVM IR types,
which allow for a variable type width from 1 to 223 − 1 bits.
The results indicate that our approach is capable of providing
worst-case migration costs for a whole horizontal split that
are beneath the dynamic worst-case of single branches, with
a reduction of up to 76 percent. These improvements in
worst-case migration overhead ultimately allow reducing the
pessimism in the response-time analysis.

V. RELATED WORK

Studies on migration in real-time systems agree that migra-
tion costs vary significantly with the resident-set size [4], [16],

Benchmark Worst-case
Resident-set Size [bits]

Split-point
Resident-set Size [bits]

binarysearch 225 224
bitonic 65 64
complex_update 480 288
countnegative 2176 1568
filterbank 60 736 60 704
iir 432 400
insertsort 544 128
minver 17 568 16 800
petrinet 5057 5056

Table I: Comparison of the worst-case dynamic resident-set
size and the resident-set size at the split point chosen by our
approach in bits on the basis of LLVM IR types.
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[17]. There exists a large body of related work on scheduling
algorithms [2], [18] that assume a constant upper bound on mi-
gration overheads. To increase predictability and reduce costs,
various approaches focused on restricting preemption and find-
ing thresholds or placements for preemption points [17], [19]–
[23]. Anderson et. al [24] extended this concept to restricted
migration, but lack a practical implementation. Automatic
analysis and generation of multi-core systems [13], [25], [26]
for non-preemptive scheduling has been studied. All these
approaches either ignore migration or are accompanied by
substantial pessimism, yet they provide a good starting point
for the practical application of our migration hits at runtime.

Orthogonal to our approach of (horizontal) splitting is
(vertical) slicing of real-time applications. Here, the time-
sensitive code is separated from time-insensitive code to
enhance schedulability [27]. In contrast to our approach, it
is difficult to control and optimize the output of code slicing
timing-wise. In a safety-critical systems, checkpointing [28],
[29] is considered to partition tasks, wherein the state to be
saved is minimized. However, checkpointing is specific to the
application and not universally applicable. Sarkar et al. [5] pro-
posed hardware-assisted migration, from which our approach
would also benefit but on which it does not depend.

VI. CONCLUSION & OUTLOOK

In this paper, we presented an approach to boost migration
in real-time systems by an automated analysis of tasks at
the source-code level. Our analysis reveals beneficial split
points with minimal migration costs. On the one hand, this
knowledge can be exploited by the RTOS at runtime and
thus is an enabler for migration thresholds; analogous to
preemptive thresholds or limited preemptive scheduling [20].
Consequently, static WCET analysis can infer tighter bounds
on migration overheads. On the other hand, our toolchain
supports the subdivision of tasks into smaller scheduling units
already at compile time, thereby improving overall schedula-
bility of static allocation schemes.

We continue to make migration in real-time systems more
accessible and predictable and are currently working on the
following topics: (1) Improving the WCET heuristics used for
splitting, for example, by adding more precise hardware mod-
els that allow for calculating migration costs based on cache
lines instead of data bits. (2) Adapting an existing RTOS to
support migration thresholds. (3) Extending the analysis to the
OS implementation and the system calls respectively.

Source code is available:
www4.cs.fau.de/Research/RTSC/experiments/abbslicing/
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Abstract—Multi-Processor Systems-on-Chip (MPSoC) plat-
forms will definitely power various future autonomous machines.
Due to the high complexity of such platforms, it is difficult to
achieve timing predictability, reliability and efficient resource
utilization at the same time. We believe that time-triggered
scheduling in combination with PRedictable Execution Model
(PREM) can provide strong safety guarantees, and our longer-
term goal is to schedule execution on the whole MPSoC (CPUs
and GPU) in time triggered manner.

To extend PREM to GPUs, we compare two synchronization
mechanisms available on the NVIDIA Tegra X2 platform: one
based on pinned memory and another that uses a GPU timer (so-
called globaltimer). We found that running the NVIDIA profiler
(nvprof) reconfigures the resolution of the globaltimer from 1
µs to 160 ns. By using time-triggered scheduling with such a
resolution, it was possible to reduce execution time jitter of a tiled
2D convolution kernel from 6.47% to 0.15% while maintaining
the same average execution time.

Index Terms—predictable execution, gpu, nvidia, tx2, prem

I. INTRODUCTION

Autonomous machines such as self-driving cars will cer-
tainly be a part of our future. Nowadays, both industry and
researchers work heavily on various aspects of those machines.
One aspect that is still not satisfactorily addressed is how
to ensure their safe operation. Those machines require vast
computational power to process all the sensor data, and reason
about them in real-time, however, safety systems are tradition-
ally implemented with slow, simple, but reliable computing el-
ements. In contrast to that, autonomous machines are powered
with heterogeneous computing architectures, where a multi-
core CPU is accompanied by one or more accelerators such
as GPUs or FPGAs, often on the same chip. These are called
Multi-Processor Systems-on-Chip (MPSoC). In this work, we
use a popular representative of these systems: NVIDIA Tegra
X2 (TX2), which features a GPU.

While FPGAs can offer precise timing, GPUs seem to be
more popular in these applications, perhaps due to their easier
programmability. However, GPUs originate from industrial
domains, where average-case performance was traditionally
more important than real-time and safety guarantees.

This work was supported by the grant no. SGS19/175/OHK3/3T/13 and
by the THERMAC project, which has received funding from the European
Union’s Horizon 2020 research and innovation programme under grant
agreement No 832011.

To reason about safety properties, the functional safety
standard for road vehicles ISO 26262 [1] defines the term
“freedom from interference”, as the absence of certain faults,
one of them being “incorrect allocation of execution time”.
This means that predictable timing is a prerequisite for achiev-
ing safety according to this standard.

We believe (and many safety standards agree) that time trig-
gered scheduling gives stronger safety guarantees than online
event triggered scheduling. In the case of MPSoC platforms,
time-triggered scheduling makes it easier to control contention
on shared hardware resources (caches, buses, memories) and
thus to control the inter-task interference. Our longer-term
goal is to schedule execution on the whole MPSoC (CPUs
and GPU) in time triggered manner. In our past work [2], we
reduced interference between tasks on a multi-core CPU by
time triggered scheduling. This paper is our starting step to
doing the same for GPU tasks.

In this paper, we first evaluate synchronization mechanisms
for GPU workload, with the conclusion that time-triggered
synchronization has the potential of having much lower over-
head than lock-based synchronization via so-called pinned
memory. However, the overhead of time-triggered execution
can be low only when estimates of worst-case execution
time are tight. For this reason, we analyze the interference
between tasks running on the GPU and try to reduce it by
using two main techniques: 1) prefetching data from global
memory to local shared memory [3] and 2) scheduling the
GPU execution in time triggered manner. Our experimental
evaluation shows that these techniques are able to reduce
the interference and execution time jitter without significantly
increasing total execution time.

More specifically, we adopt the concept of Predictable
Execution Model (PREM) proposed by Pellizzoni et al. [4],
where computation is split into memory and compute phases,
and these phases are scheduled to not interfere with each
other – for example, by not running two memory phases
in parallel. For GPU workloads, this would result in severe
underutilization of memory bandwidth. Therefore, we aim to
allow multiple kernels to access memory simultaneously while
preserving predictable execution time.

Our overall approach has two main assumptions: a) Exe-
cuted workload is time-deterministic, meaning that the amount
of computation can be determined ahead of time and does not
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depend on processed data. This holds for many algorithms
used for autonomous machines such as neural network in-
ference [5] or visual object tracking [6]. b) Time-triggered
scheduling is used for the whole MPSoC platform to ensure
that interference between all on-chip processors can be con-
trolled. On the other hand, it is known that time-triggered
scheduling often lacks the required flexibility. For this rea-
son, we envision the use of both time- and event-triggered
approaches together. Time-triggered execution will be used
for shorter, non-preemptive intervals (e.g., for processing of
one camera frame), and multiple of those intervals will be
executed in a more dynamic way based on online scheduling
and synchronization mechanisms.

II. RELATED WORK

Similarly to our work, recent research by Cavicchioli et
al. characterized interference on main memory and commu-
nication bus level between the CPU and GPU [7]. Other
researchers [8], [9] developed various microbenchmarks to
understand GPUs and their memory system. Our work differs
from those by using time triggered scheduling.

The scheduling behavior of many GPUs is unknown in
most cases due to a lack of publicly available and open
documentation. Therefore, GPUs are mostly treated as black
boxes, and different approaches for predictable execution
of different workloads have been developed to bypass this
uncertainty. An often used method is to ensure that only one
process can access the GPU resources at a time by use of a
locking mechanism [10]. The cost of this approach may be
an underutilization of powerful GPUs. Dividing the workload
into smaller preemptable chunks could reduce this problem
[11], [12]. Others evaluated techniques to manage accesses to
memory [13] to reduce contention between GPU and CPU
applications.

Further Otternes et al. assessed the NVIDIA TX1 plat-
form regarding real-time behavior concerning co-scheduling
of multiple kernels [11] [12], and additionally, Amert et al.
derived a set of the GPU scheduling rules used in the Jetson
TX1 and TX2 platforms to brighten up the black box nature
of those platforms [14]. They ran different experiments to
understand how the GPU schedules the work if submitted
from the same or different processes. They found that the
GPU workload launched from different processes shares the
GPU by the use of multiprogramming, where each kernel runs
exclusively on the GPU during its assigned time slice and
does not overlap other GPU computation. For GPU workload
submitted from the same process, the computation can overlap
and is scheduled according to the derived rules. Bakita et
al. proposed a validation framework to validate those derived
rules for future GPU generations [15].

Capodieci et al. [16] changed how the GPU workload
is scheduled by using an EDF scheduler combined with a
Constant Bandwidth Server. Their scheduler is implemented
in a hypervisor and works by replacing the run list inside the
GPU-host.
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Figure 1. Estimated architecture of one SM of TX2

III. BACKGROUND

A. GPU/TX2 architecture

NVIDIA Tegra X2 (TX2) is a high-performance embedded
MPSoC consisting of two CPU clusters and one Pascal GPU
with 256 CUDA cores. The memory bus is shared across
the entire chip. However, each CPU cluster and GPU have
a separate L2 cache. These caches are not coherent. The
GPU is composed of two independent computing blocks called
Streaming Multiprocessors (SM), each having its L1 cache,
shared memory, and four warp lanes. Each warp lane executes
a warp, i.e., a group of up to 32 threads performing the same
instruction on different data. Since NVIDIA does not publish
all details about their GPU architectures, it is difficult to
estimate architecture details, and how GPU workload is sched-
uled on the available warp lanes. Based on publicly available
documentation, previous work by Amert [14] and Capodieci
[16], and our experiments, we assume the architecture of one
streaming multiprocessor to be as depicted in Figure 1. The
workload is inserted by CPUs into stream queues, then by rules
revealed by Amert [14], put into the execution engine queue
and assigned to an SM if enough resources are available. We
assume that up to 16 warps can be assigned to a single warp
lane. The warps from CUDA blocks (see III-B) are placed in
the available warp context slots, which store their architectural
state, and are run by the hardware warp scheduler (WS) as
soon all their dependencies are satisfied. The warp scheduler
issues and interleaves instructions from the associated warps,
hiding latencies caused by waiting for shared resources. After
all warps in a block have finished, the occupied warp context
slots are freed and can be reused by warps from the next
queued block. Warp scheduling is similar to hyperthreading
used in CPUs. Multiple running warps share CUDA cores
and other resources such as multiple load/store units, special
function units (SF) and double precision units (DP) in one
warp lane.

The GPU also features a clock source, called globaltimer,
which provides synchronous time to all SMs.

In this paper, we do not consider graphics jobs and how the
hardware is shared between them and compute jobs.

24



B. CUDA programming model

To offload computation to the GPU, NVIDIA offers the
C/C++ API called CUDA. Programmers write so called ker-
nels, i.e., functions that execute in parallel on the GPU.
When a kernel is launched, the programmer specifies, with a
special syntax, the kernel execution configuration: the number
of threads and how those threads are organized into groups
(CUDA-blocks or thread-blocks). Each block is executed in-
dependently without a built-in possibility to synchronize with
other blocks or kernels. Only threads within a single block
can be synchronized. Launched CUDA kernels are placed
into queues called streams from where they are executed in
FIFO order. By default, there is one stream per process. More
streams can be created to execute kernels in parallel if enough
resources are available. All kernel launches are asynchronous,
meaning that if a CPU needs to wait for kernel completion, it
has to invoke explicit synchronization operation.

IV. EVALUATION GOALS

In this section, we explain the goals of this paper in more
detail.

A. Synchronization mechanism

A precondition for applying PREM to GPU workloads is the
availability of fast synchronization between all blocks running
at the same time.

In our previous work, we used locks in shared memory to
synchronize PREM phases on the CPU [2]. Shared memory
offered a fast communication channel since multiple CPU
cores share the same cache and the synchronization bypasses
the main memory. On the TX2 GPU, an equivalent approach
would be to use pinned memory, which is accessed in non-
cached manner, to arbitrate accesses to the main memory.

An alternative approach would be to use time based syn-
chronization using the globaltimer. We are interested in finding
the overhead of the mechanisms and assessing their suitability
for whole-GPU synchronization.

B. Benchmark selection

Polybench-ACC [17] is a collection of computational ker-
nels such as matrix multiplication, 2D or 3D convolution, or
linear equation solver, used to evaluate the performance of
compilers and similar software. Mentioned algorithms are the
core of many high-performance applications such as neural
networks or image processing. To see the potential benefit of
our interference reduction approach, we want to evaluate it on
a benchmark highly sensitive to memory interference. There-
fore, we evaluated the sensitivity of all polybench kernels to
memory interference from CPU and selected 2D convolution
as a good candidate.

C. Reduction of intra-GPU interference

As the Polybench 2D convolution kernel is accessing the
global memory, it is hard to reduce the interference directly.
Therefore, we first apply tiling – a technique commonly used
to coalescence memory accesses in global memory to speed up

the GPU execution [3], [18]. The tiling is done by splitting the
input data into multiple tiles which fit into the shared memory
segment within a CUDA block. The computation is then
performed on the tile previously prefetched from the global
memory into the shared memory. At the end, the processed
tile is written back. This tiled implementation naturally maps
to the three PREM-phases: prefetch, compute and writeback.

Further, we want to assess the interference between the
individual phases of tile processing if scheduled synchronously
in parallel.

V. EXPERIMENTAL EVALUATION

We ran all experiments on the Jetson TX2 board in NV
Power Mode MAXN and with all frequencies configured to the
maximum values by running jetsonclock.sh (a script provided
by NVIDIA to configure board clocks). All source code we
used for the experiments can be found in the git repository:
https://github.com/CTU-IIG/ tt-gpu

A. Pinned memory synchronization evaluation

We evaluated synchronization based on locks in pinned
memory with two experiments. First, we measured the ping-
pong round-trip time between two GPU kernels and later
the experiment was repeated to collect the round-trip times
between CPU and GPU since the synchronization mechanism
should offer a possibility to be used for CPU to GPU syn-
chronization. Both experiments have been repeated for 1000
times. We had to add the membar instruction to ensure that
one GPU kernel sees the updates from the other GPU kernels.

Between GPU kernels the average round-trip time was 2.065
µs (min: 1.92 µs, max: 2.24 µs) and the CPU to GPU round
trip time was in average 1.94 µs (min: 1.47 µs max: 2.56 µs).
These times are not sufficient for synchronizing PREM phases
on the GPU, because, as discussed later in Section V-E, the
length of the phases is in the range of 1 to 4 µs and compared
to this, the overhead of this synchronization mechanism would
be too high.

B. GPU timer granularity

We evaluated the globaltimer as a synchronization mech-
anism between GPU tasks. According to the documentation
[19], the globaltimer should have a resolution in the nanosec-
ond level. The main criteria for the globaltimer to be used
as a synchronization mechanism are its resolution and that
it is running synchronously on both SMs. To evaluate these
properties, we ran a kernel from Listing 1 with four blocks
of one thread each. Each block retrieves the globaltimer
timestamps in a for loop, storing them into its shared memory
segment. The shared memory was selected for two reasons:
1) its access time is short enough to not influence timestamp
precision much and 2) allocating shared memory segments to
occupy half of the available shared memory on an SM ensures
that two blocks execute on one SM and two on the other.

Figure 2 shows a zoom into the first few iterations of
collected timestamps. Running the experiment in the default
settings gives disappointing results. The measured resolution
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Listing 1. Simplified kernel to retrieve global timer jitter
__shared__ uint64_t times[NOF_STAMPS];
for (int i = 0; i < NOF_STAMPS; i++)

asm volatile("mov.u64 %0, %%globaltimer;" \
: "=l"(times[i]));
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Figure 2. Timestamps and step sizes of the globaltimer after reboot and after
one run of nvprof. The retrieved timestamps of the other blocks exhibited the
same resolution.

was only 1 µs. The “Default” points on the left side show
the timestamps collected by the first block. The right side
of the figure shows the histogram of the differences between
two subsequent timestamps. By coincidence, we found that
running nvprof1 once on an arbitrary kernel reduces the mea-
sured resolution of the globaltimer to 160 ns, as shown with
“After Nvprof” points in Fig. 2. The use of nvprof seems to
reconfigure the globaltimer on the GPU without reconfiguring
it back at the end. Although this behavior is not documented
and not really intuitive, it helped us to increase the resolution
of the globaltimer.

It is important to highlight, that nvprof needs to run only
once on an arbitrary kernel. After this run, the further kernels
can run without the instrumentation with nvprof to still profit
from the higher resolution.

C. Time triggered execution of tiled 2D Convolution

To see how the execution jitter occurs and if it can be
reduced if multiple kernels (4 in our experiments) run in
parallel, we compare the original 2D Convolution polybench
benchmark (later denoted as legacy implementation) and our
tiled version of it. Each kernel was run 1000 times then the
average, minimum and maximum execution times have been
calculated. Both implementations apply a 3x3 convolution
mask on a dataset consisting of 1026x1022 float elements.
The kernels were launched with a configuration of two blocks
with 512 threads. The tiled implementation tiles the input
data into 512 tiles of 4x512 elements. Each tile is processed
in the following phases: first, the tile is prefetched from
global memory into the CUDA shared memory segment, then
the computation takes place, and in the end, the resulting
data is written back to global memory. Since the streaming
multiprocessor on the TX2 offers 64 kB of shared memory,
we dimensioned our kernel blocks to use 16 kB of shared
memory to allow the execution of 4 kernels in parallel. To
investigate the possibility of interference reduction, we use the
globaltimer to synchronize the running blocks and to control
the start times of the tile processing. Figure 3 shows how

1 nvprof is the profiling tool offered by nvidia to analyze traces and timings
of called CUDA API and launched kernels
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Figure 3. Zoom into the execution of 4 tiled 2D convolution kernels (K0–
K3). The total execution time was 2.87 ms. The tiles are scheduled on both
streaming multiprocessors with an offset of 1.4 µs against each other. Both
blocks of the same kernel (B0–B1) are scheduled at the same time instance
and are processing multiple tiles in sequence. Blue, orange and green colors
represent prefetch, compute and writeback phases and blocks with the same
hatch correspond to the same kernel. During the white phases the blocks are
spinning on the globaltimer until they are allowed to process the next tile.

the tile processing start times are shifted with an offset of
1.4 µs against each other. The two blocks inside a kernel start
processing their current tiles always at the same time, the white
spaces between the tile processing phases represent the time
a block is spinning on the globaltimer until it is allowed to
start with the next prefetch phase.

To have a more elaborate overview of the influence of
the tile scheduling offset to the observed execution jitter, we
run four kernels of the tiled 2D convolution in parallel with
different tile offsets. All kernels recorded their block start/end
times using the globaltimer. The difference between the latest
block end time and the earliest start time is called scenario
execution time.

We can see in Figure 4 the average scenario execution time
with the min-max execution jitter (blue) and the corresponding
execution jitter compared to the scenario execution time in
percentage (red). The dotted black line represents the average
scenario execution time of the baseline (4 legacy kernels in
parallel). As we can see, the scenario execution time and
execution jitter remain relatively stable at 2.5 ms respectively
1.4% until the tile offset exceeds 1.2 µs. After this point,
the scenario execution time increases and the execution jitter
decreases. Based on these results, we classify the tile offsets
of 1.3 µs and 1.4 µs as able to reduce the execution jitter while
still having a acceptably low scenario execution time.

Further, the 2D convolution kernels were launched in the
next scenarios: i) The original (legacy) implementation with
1 kernel running on the GPU, ii) the legacy implementation
with 4 kernels running in parallel, iii) the tiled version with
4 kernels running in parallel but without synchronization and
iv) the tiled version with the tile processing shifted by 1.3
µs and v) by 1.4 µs offset. Figure 5 shows the average
execution time and execution jitter of the scenarios. The blue
bars show the average scenario execution time. The minimum
and maximum scenario execution times are represented by
the small error bars on top of the blue bars. The red bars
represent the min-max jitter in percentage relative to the
average scenario execution time. It can be seen, that the
legacy implementation suffers from high contention in the four
kernel configuration. The worst-case observed execution time
(WOET) is still slightly shorter than the WOET of the single
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kernel version executed 4 times in a row, but the execution
jitter is around 6.47% of the average execution time. The
tiled implementation with 4 kernels already performed faster
than the legacy implementation and its execution jitter is
only 1.47%.

The tiling concentrates the accesses to the main memory
of the kernels. Therefore, the kernels do not have to access
the main memory in all phases, which leads to less contention
and lower jitter. The scheduled tiled versions have a bit higher
average scenario execution times than the legacy four-kernel
version, but with the advantage of execution jitter reduced to
0.15% and 0.04% for the scheduling offset of 1.3 µs and 1.4 µs
respectively. Still, one could argue that the WOET of the tiled
version (2.42 ms) without scheduling is still shorter than the
minimum execution time of the scheduled version (2.87 ms).
However, the version without the scheduler offers no future
possibilities to synchronize the GPU with the CPU, and the
whole execution on the GPU would need to be treated as a
single memory phase for CPU PREM scheduling.

D. Phase evaluation

In the tiled implementation, each block processes sequen-
tially multiple tiles, each consisting of three PREM phases.
To analyze in more detail how the phases interfere, we added
another synchronization point, as shown in Figure 6, between
compute and writeback phases to allow independent evaluation
of phase interference. By shifting the phase start times, we
measured the interference of: i) the prefetch and compute
phases (WB is scheduled later not to run concurrently), and of
ii) the writeback phases (PF and C are scheduled earlier not
to run concurrently).

In Figure 7, we can see how the prefetch and compute
phases interfere with each other. The average compute time
bars are stacked on top of the average prefetch time bars. The
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Figure 6. Synchronization points to schedule the PREM phases independently.
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two blocks running in a kernel are scheduled at the same time instance.

bars on the right represent the phase execution jitter of the two
phases compared to the total average phase execution time (PF
+ C). One can see that the average phase execution time and
the jitter are reduced the less the phases overlap. This effect
is dominant in the prefetch phases. An interesting fact is that
the compute phases have the biggest jitter when they overlap
with other compute phases (no shift). This indicates some
contention on the shared memory or other resources in the
streaming multiprocessor. It also prevents the straightforward
application of the PREM model, which assumes that compute
phases do not interfere.

Figure 8 shows the interference of the writeback phases.
Similarly to the prefetch phases, the less the writeback phases
overlap, the more the phase execution time is reduced.

Even though the phase execution jitter appears to be high
(e.g. 81% in Fig. 7 on the left), the kernel scenario execution
jitter percentage is much smaller (1.2% in Fig. 5) since it is
relative to longer scenario execution time.

E. Comparison of PREM scheduling on CPU and GPU

When we compare the above-described results with our
previous application of PREM on the ARM CPUs of the Jetson
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TX1 [2], the prefetch and writeback phases took around 100
and 400 µs respectively and compute phases up to 3 ms. This
allowed to schedule a sequence of memory phases in parallel
with one or more longer compute phases and the CPUs were
efficiently utilized. On the GPU side, the phases execution
times are much shorter and differently distributed. Namely,
the writeback phase has the shortest phase execution time
followed by the compute and the prefetch phases. Therefore,
the approach used for CPU PREM scheduling, is not generally
applicable to the GPU. When combined with the fact, that the
execution time of compute phases is influenced by overlapping
with other compute and prefetch phases, it is clear that the
PREM scheduling rules need to be changed to be properly
applicable to the GPU execution.

The experiment, where the whole tiles were scheduled
against each other (Fig. 5), showed that the jitter could already
be significantly reduced without introducing big increase of
average execution time of all participating kernels. Therefore,
a solution to predictable execution times on the GPU requires
a different (less strict) set of co-scheduling rules than on the
CPU. It remains to be seen whether/how such rules can be
used as a proof for freedom from interference.

VI. CONCLUSION AND FUTURE WORK

In this paper, we evaluated mechanisms for the low-
overhead application of predictable execution model (PREM)
to GPU kernels. We compared two synchronization mecha-
nisms for synchronization of PREM phases. The memory-
based synchronization achieves round-trip time of around
2 µs, which would result in too high overhead for short
PREM phases on the GPU. Synchronization based on the
globaltimer allows reaching lower overhead, but only after
running nvprof, which magically increases the globaltimer
resolution to 160 ns. Furthermore, we have shown that by
using a tiled implementation of the 2D convolution kernel
and tightly synchronizing execution all blocks across multiple
kernels by using the globaltimer, we can reduce the execution
time jitter from 6.47% to 0.15% while maintaining almost the
same average execution time. We have also shown that the
duration and interference of the PREM phases are different
on the GPU compared to CPU. Namely, the phases are 100
to 1000 times shorter on the GPU and the execution time
of compute phases can be influenced by other overlapping
PREM phases. This and the short compute phase times make it
impossible to execute a sequence of memory phases in parallel
with a compute phase. On the other hand, simple scheduling
the whole tiles with fixed offsets, investigated in this paper,
resulted in sufficiently predictable execution with low jitter.
Therefore, we believe that applying more advanced scheduling
can lead to even more predictable execution, especially when
combined with time-triggered CPU scheduling.

Since we performed the first experiments only on the 2D
Convolution kernel, we plan to analyze in more detail how
various execution phases influence each other in other kernels.
Especially we would like to evaluate the behavior of the PREM
phases of more compute intensive kernels. Based on such an

evaluation, we want to come up with scheduling rules whose
application will lead to low execution time jitter and acceptable
performance at the same time. Later we plan to evaluate our
scheduling concept on a real application commonly used in
autonomous driving. Combining predictable GPU execution
with PREM-based CPU execution is also planned.
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Abstract—The high computational demand and the modularity
of future space applications make the effort of developing
multithreading reusable middlewares worthwhile. In this paper,
we present a multihreading execution platform and a software
development framework that consists of abstract classes with
virtual methods. The presented work is written in C++ following
the event-driven programming paradigm and based on the in-
verse of control programming principle. The platform is portable
over different operating systems, e.g., Linux and RTEMS. This
platform is supported with a modeling language to automatically
generate the code from the given requirements. Our platform has
been used in already flying satellites, e.g., Eu:CROPIS.

We present in this paper an example that illustrates how to
use the proposed platform in designing and implementing an
on-board software system.

Index Terms—RTOS, Multithreading, Event-driven

I. INTRODUCTION

Modern space applications demand high performance com-
puting resources to carry out the increasing computational
requirements of on-board data processing and sophisticated
control algorithms. On the one hand, multicore platforms are
promising to fulfill the computational requirements properly
[1] as they provide high performance with low power con-
sumption compared with high frequency uniprocessors. How-
ever, it is quite often not easy to write applications that execute
in parallel. On the other hand, sensors are slow and cannot
be on a par with the computing resources. Self-suspending
processes are usually used to read from sensors, which makes
timing more complicated and presents high pessimism and,
thus, high over-provisioning.

In this paper, we present an event-driven multithreading
execution platform, which is written in C++ following the in-
verse of control programming principle to improve reusability.
We call our execution platform Tasking Framework. Tasking
Framework provides abstract classes, which facilitates the
implementation of space applications as event-driven task
graphs. It also provides a multithreading execution based on
POSIX, C++11 threading, and OUTPOST [2], which makes
Tasking Framework compatible with Linux, RTEMS and many
other real-time operating systems (RTOS).

Tasking Framework is motivated with lessons learned from
the Bispectral Infra-Red Detection (BIRD) [3] attitude control
system. The BIRD satellite launched in 2001. BIRD used a
distributed Kalman filter [4] to estimate the attitude state vector

of the satellite. This filter comprises several estimation and
prediction modules executed by the controller thread. Each
estimation module computes one value in the attitude state
vector, for example, the sun vector from the sun sensor input
values, the predicted sun vector and expected control effect
from the last control cycle, a rate from the new sun vector
or magnetic field vector, or the best rate by cross checking
magnetic field vector rate, sun vector rate and measured rate
from gyroscopes. The computation order is given by the data
flow between the estimation modules. The order was given
by a call sequence of the estimation modules in the controller
thread.

During the development of the BIRD attitude control system
some timing issues arose from the limited computing power of
the on-board computer, and the timing requirements imposed
by the sensors. BIRD used for all threads a predefined time slot
in 500 ms cycle. The star tracker reported the attitude quater-
nion after 375 ms. The output buffers of the five actuators
have to arm at 450 ms in the control cycle. By this, only 75
ms remain for all the computations inside the attitude control
system. With the means of the event-driven paradigm, an as
soon as possible scheduling of the computations is possible,
which realizes timing constraints in the end of the control
cycle. Only the computations that depend on the star tracker
data have to be computed after 375 ms in the control cycle.

Tasking Framework has been used in the following projects:
Autonomous Terrain-based Optical Navigation (ATON) [5],
Euglena Combined Regenerative Organic food Production
In Space (Eu:CROPIS) [6], Matter-Wave Interferometry in
Weightlessness (MAIUS) [7], and Scalable On-Board Com-
puting for Space Avionics (ScOSA) [8].

The rest of the paper is organized as follows: We present
the basic concepts of Tasking Framework in Section II. In
Section III, we elaborate the execution model. Our modeling
language is presented in Section IV. Section V presents a case
study of using Tasking Framework with the proposed Tasking
Modeling Language (TML). After presenting our execution
platform, we address the related work in Section VI, and we
conclude in Section VII.

II. TASKING FRAMEWORK

Embedded system applications are often described as a
graph, which illustrates the software components and the de-

29



Flight 
Controller

Camera1

Camera210Hz

IMU 100Hz

Feature
Tracking
Crater

Mapping
Navigation

Filter

Logger
100Hz

100Hz

Fig. 1. Optical navigation system

pendencies among them. Figure 1 shows an optical navigation
system for spacecraft, which is a part of the ATON project
[5]. Real-time capabilities are necessary to analyze optical
sensor data and to react on the system’s estimated position.
The Tasking Framework is used to periodically trigger the
cameras and to execute the image analyzer modules as soon
as all required input data is available.

In this system, two cameras are triggered by a periodic
timer and the images are then transferred to different analyzer
components. The first one is a feature tracking component
that estimates a relative movement, the second is a crater
navigation component that tries to match craters on the Moon
in the input images with a catalog of craters. The output of
these components is then transmitted to the navigation filter.
The navigation filter uses a Kalman filter to fuse the inputs
with data from an additional inertial measurement unit (IMU)
to get an estimated output position, which is then logged and
sent to the flight controller. Tasking Framework is used in this
example to integrate all these components.

Tasking Framework is implemented as a namespace
Tasking, which comprises abstract classes with few vir-
tual methods. It consists of the execution platform and the
application programming interface (API). Using the Tasking
Framework, applications are implemented as a graph of tasks
that are connected via channels, and each task has one or more
inputs. Periodic tasks are connected to a source of events to
trigger the task periodically, see Figure 7. In practice:

• Each computation block of a software component is
realized by the class Tasking::Task. The virtual
method Task::execute() will be overridden by the
code of the software component;

• Each input of a task is realized by the class
Tasking::Input;

• Each input object is associated with an object of the class
Tasking::Channel;

• Each task may have multiple inputs and multiple outputs;
• A set of tasks, inputs and channels are framed in

a scheduler entity, which is realized by the class
Tasking::Scheduler;

• Each scheduler entity is provided with a scheduling
policy;

• Each scheduler entity has threads to execute the assigned
tasks according to the specified scheduling policy. The
number of threads is specified by the software developer.

• Tasks can be activated also periodically by the means of
the class Tasking::Event.

time

τrc τr

timeout

Activation Completion Delay Execution

Fig. 2. An example of using the relative time. τrc sends a request command
to the sensor. After the timeout occurrence, the following task τr reads the
response sent by the sensor.

Although space software standards discourages virtual
methods, the execute() method of tasks should be virtual
to let the developer implement different tasks. A few other
methods are intentionally virtual to add application code, e.g.
synchronization of channel data.

To simplify setting up an object w.r.t. static memory man-
agement, we designed templates for the main classes.

A. Activation model

A task τi is activated and an instance of it will be queued
when all inputs are activated (and semantic). Or semantic is
also supported by providing the final flag. When the final flag
is set for an input, the task will be activated regardless of other
inputs.

The j-th input inij of task τi is activated when a pre-
decessor task or other sources, e.g. the main thread, calls
Channel::push() on the associated channel with inij .
In the context of Channel::push(), the input inij will
be set to active and if the final flag is set then τi will be
activated, otherwise, the other inputs will be checked and τi
will be activated only when all inputs associated to it are set
to active.

Although we design our platform to be event-driven, time-
triggered activation is supported by presenting the class
Tasking::Event. Two time-triggered activation methods
are supported: periodic and relative time. In the periodic
method, the given time duration represents the distance be-
tween two successive events. Relative time method is used,
for instance, when sensor data is needed. A task τrc sends
a request command to the sensor then it sets the timer to
a predefined time duration (relative time) and terminates.
After the timeout occurrence, the following task τr reads the
response sent by the sensor. Note that, this solution is similar to
using self-suspending tasks [9]. Using relative time (in general
using self-suspending tasks) requires to tightly bound the time-
out. However, using channels connected to Interrupt Service
Routines (ISR) of IO drivers (event-driven programming), in
which τr is activated only when the sensor data is available,
can improve the utilization. Figure 2 illustrates the relative
time.

B. More features

1) Task group: The default call semantics among tasks that
is supported in Tasking Framework is asynchronous, in which
a task τi activates the successor tasks, then it can be executed
again regardless of the status of the successor tasks. However,
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in some applications, the graph of tasks or a subset of it
has a synchronous call semantics such that τi activates the
successor tasks and it will not be executed again till all tasks
in the synchronous subset finish their execution. To support the
synchronous call semantics, the class Tasking::Group is
provided.

2) Task barrier: The number of activations at an input is
declared at compile time. In situations, where the number
of data elements is only known at run time, the activation
cannot be adapted. This can be the case when, for example,
a data source have states where no data is sent. The class
Tasking::Barrier is a mean to control the activation of
tasks with an unknown number of data packets.

By default the barrier can be instantiated with a minimum
number of expected push operations on the barrier. After the
minimum number of pushes happens, the barrier will activate
all associated inputs, as long as data sources did not increase
the number of expected push operations on the channel. If it
is increased, more push operations are expected.

3) Unit test: We provide a special scheduler
SchedulerUnitTest with step operation to support
unit testing. Using Googletest (gtest) [10], we provide twelve
classes to test the API.

Note that, the execution model has to be tested separately
by the developer using other means, e.g. stress test.

III. EXECUTION MODEL

Tasking Framework is a multithreading execution platform.
The software developer should specify the number of threads,
called executors. Therefore, there will be n + 1 threads: the
main thread plus n executors. The implementation of the
execution model is platform specific. We have three implemen-
tations of the execution model: the POSIX threading model
(targeting Linux), C++11 threading and OUTPOST-core [2]
(targeting RTEMS and FreeRTOS).

The execution model is represented by 4 classes:
• Tasking::SchedulerExecutionModel:

Creating, scheduling, managing the executor threads and
interfacing to the API.

• Tasking::ClockExecutionModel: Managing the
time for time events. In embedded Linux, the clock is
represented by a thread.

• Tasking::Mutex: An encapsulation of the mutex.
• Tasking::Signaler: An encapsulation of the con-

ditional variables.
Tasking Framework schedules the ready task instances to

the available executors according to the following scheduling
policies: First-In-First-Out (FIFO), Last-In-First-Out (LIFO),
and Static Priority Non-Preemptive (SPNP). The software
developer can assign a priority to each task to be used by
the SPNP queue.

An executor thread goes to sleep, i.e. waits on a conditional
variable, after being created till it gets a signal from the clock
thread (or a timer) in case of time-triggered tasks, or from
other sources, e.g. the main thread. Figure 3 shows the life
cycle of an executor thread.

DORMANT
create()

RUNNING

wait(&cond_var)

WAITING

signal()

join()

Fig. 3. Executor thread states
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push
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activate
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perform
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execute

synchronizeEnd

synchronizeEnd

reset

reset

reset

Fig. 4. The sequence of method calls in Tasking Framework to execute a
task

The executor that executes the task τi activates the suc-
cessor tasks and queue them in the ready queue, and it
will signal a free executor, which is in WAITING state, if
there is any. That is to say, Tasking Framework balances
the load on the available executors. Even in case of one
executor, the executor returns first from the execute()
method of τi before checking the ready queue and executing
the successor tasks of τi. The sequence of method calls
that are performed by Tasking Framework to execute a task
by an executor thread is shown in Figure 4. Because we
have multiple threads that may try to access the data stored
in the channel, a protection mechanism is implemented to
synchronize the access to this shared data by different threads.
The protection mechanism is implemented by the means of
two virtual methods: Channel::synchronizeStart and
Channel::synchronizeEnd.

In the implementation for Linux, the clock is implemented
as a thread with the real-time clock provided by POSIX. The
clock thread goes to sleep for a timeout equal to, e.g., the
period of a periodic task. Then it signals a free executor if
there is any, and it computes the next timeout.

A. Scheduling and priority handling

As has been mentioned, each instance of the
Tasking::Scheduler is assigned a set of tasks,
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inputs, channels, executors and a scheduling policy. With one
instance for the application, the scheduling approach follows
the global scheduling, i.e. all tasks can be assigned to any
executor. However, it is possible to have multiple instances in
one application. Considering the RTOS, we assign priorities
to the executors (threads). Hence, we can handle priorities in
groups (each group represents one Tasking::Scheduler
instance).

IV. TASKING MODELING LANGUAGE (TML)

We designed the API to be as usable as possible con-
sidering the high performance requirements of real-time on-
board software systems. However, as the Tasking Framework
is used in scientific missions with experts of different domains
working on the system, the framework users might not be
experts in implementing real-time software. To further improve
applicability, we developed a model-driven tool environment
that can be used to generate calls to the Tasking Framework
API and its communication code to transfer data between
different tasks. The tool is integrated into Virtual Satellite1, a
tool for model-based systems engineering. As Figure 6 shows,
the TML development environment uses different types of
description methods to model the software. Atomic data types
are defined in tables, whereas data type classes and software
components can be specified in textual languages. Because
our focus is on data and event-driven communication, the
connection of different components is modeled graphically.
Each of the languages is specifically designed to describe
software based on the Tasking Framework and, thus, further
simplifies creating Tasking code.

A. Tasking-Specific Languages

Modeling languages specifically designed for a project or
tool provide the benefit of introducing only few project-
specific elements. The fewer elements in a language, the less
effort is necessary to learn it. An early prototype of the mod-
eling environment used the unified modeling language (UML)
and the systems modeling language (SysML) to describe the
Tasking-based software for the ATON project [11]. While the
project clearly profited from modeling and its code generation,
usage of the modeling tool required to understand UML,
SysML and the Tasking Framework.

To improve modeling of software based on the Tasking
Framework, we developed a tool suite including several
domain-specific languages (DSLs) that contain all tasking rel-
evant information. Figure 5 shows the editors of the different
languages. The basic work flow is to define atomic data types
first, then employ these to specify more complex data types,
which are later generated as classes. As shown in the figure,
atomic data types can be listed in a table. Additional attributes,
such as the size of these types, allows running analyses about
exchanged data and performance of components. After data
types have been specified, it is possible to model software

1Virtual Satellite: a model-based tool for space system development; web
page: https://www.dlr.de/sc/en/desktopdefault.aspx/tabid-5135/8645 read-
8374/

Data

Components

Task Graph

Fig. 5. Modeling tool environment for TML

components. Components can be modeled either as plain
classes or tasks and can have inputs, outputs and parameters.

After the description of data types and components, they
can be instantiated in the main part of TML, the task graph.
Instantiating components in this graphical description automat-
ically adds inputs and outputs of the components. Connecting
components validates data types and allows only compatible
elements to be connected. Tasking-specific event parameters
as well as timing and priorities of the components can be
configured in this diagram.

Besides modeling of these main components of the Tasking
Framework, it is possible to model custom communication
channels, storage types, scheduling policies and units within
the model.

B. Increased Development Productivity
The model-driven tool does not only simplifies the applica-

tion of the Tasking Framework, it also increases the efficiency
of developing software based on the framework. Projects with
model-driven software development benefit from higher short-
term productivity because users can generate new features
from the model; long-term productivity increases because
changing requirements can be handled by simply updating the
model [12]. Thus, in context of the Tasking Framework, adding
components to the diagram and connecting them generates
their execution containers and communication code. This code
does not have to be implemented manually. Furthermore,
if project requirements change and the components have to
be connected differently, reconnecting the elements in the
diagram automatically updates the software’s source code and
documentation.

As Figure 6 shows, generation from the model not only
generates source code but also build files and tests. SCons
scripts or CMake files allow to build the generated code after
generation immediately. This way, it is possible to start the
development of a project from a running system and iteratively
add new features.

C. Extensibility of the TML Model and Generated Code
To be applicable in as many projects as possible, the

modeling environment is highly extensible. Besides defining
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custom data types and components, it is also possible to
dynamically add new channel types with custom parameters.
For such new channel types, the generator creates base classes
with templates or constructor parameters depending on the
parameters definition as static or dynamic. Instances of these
custom types in the task graph are also generated as instances
of the generated class and configured with parameter values
from the model. Thus, even with a dynamic definition of new
types and parameters within the model, the generated code
remains executable.

In addition to the extensibility of the model language, the
generated code can be customized by keeping code updates
through regeneration possible. A combination of the decorator
and generation gap pattern allows customizing the generated
code by subclassing [13] [14]. The generated abstract class
is regenerated, the concrete class is generated only once and
then kept to not overwrite customizations.

V. CASE STUDY

To demonstrate the benefits of the Tasking Framework in a
simple real-time software, we recall our example in Figure 1.
Figure 7 shows the architecture of the software as TML task
graph diagram.

With the Tasking Framework, software components are
implemented as tasks, data is stored in Channels and Events
are used for periodic activation of the components. For the
execution on the prototype flight computer, we assigned four
threads to execute the software. As soon as the camera driver
task pushes an image into the subsequent channel, the feature
tracking task is notified and activated. The crater navigation
task is configured to be activated only for every second image
and, thus, runs with a reduced frequency. As the IMU driver
does not have an external trigger, it is implemented as a thread
that runs continuously and produces acceleration rate data with
a frequency of 100Hz. Because the navigation filter has to
update the output position with every IMU value, the final
flag of its input data from the IMU is set. Therefore, if the
input data from the crater navigation and feature tracking are
available they are used, otherwise they are ignored.

To model this setup with TML for generation of the
necessary tasking code, the first step is to define data types
that can be used in the software. After a definition of the
atomic types, such double and uint8_t, we can model
the data types for CameraImage, EstimatedPosition,
AccelerationRate and NavigationState. As next
step, we have to model the actual components, which are

generated as tasks. To create a model element for the
CameraDriver task, we specify an input that does not have
any data type and an output of type CameraImage. As last
step of the element definition, we specify two different channel
types: one LIFO channel with a parameter for its size and a
channel with two buffers that switch every time data is added.
In the task graph diagram we can then instantiate and connect
all the previously defined elements. As we have two cameras,
the camera driver task is instantiated twice. In the diagram
we can then configure the timing and event parameters. As
the crater navigation should run only every second image, we
configure its input with a threshold of two. With the selected
scheduling policy of priority-based, we can configure priorities
for each task.

After we described the system in a TML model, we can
generate its source code. All task definitions are generated with
their in- and output interface; their instances in the diagram
are created as objects in the software. Both cameras can be
instances of the same camera driver task. For task definitions
and custom channels, the generator creates base classes, which
can be customized by subclassing.

VI. RELATED WORK

Many platforms have been proposed for developing and
testing embedded systems. Sadvandi, Corbier and Mevel pre-
sented in [15] a real-time interactive co-execution platform
designed at Dassault Systèmes. The objective is to provide in-
tegration, co-execution and validation of heterogeneous mod-
els using model-based testing process, which comprises In-the-
Loop testing, namely, Model-In-the-Loop (MIL), Software-In-
the-Loop (SIL) and Hardware-In-the-Loop.

The Embedded Multicore Building Blocks (EMB2) [16]
is an open source C/C++ framework for the development
of parallel applications. EMB2 is developed by Siemens AG
to efficiently exploit symmetric and asymmetric multicore
processors. EMB2 provides different scheduling strategies for
both hard and soft real-time systems. Although Tasking Frame-
work supports multithreading, it is not specifically dedicated
for multicore systems.

OUTPOST is an open source mission and platform indepen-
dent library developed in the German Aerospace Center (DLR)
to design and implement reusable embedded software as early
as possible and hence to be independent from the operating
system and the underlying hardware. OUTPOST is originally
called libCOBC, and it has been used in the Eu:CROPIS
project [17], and in the ScOSA project [8]. Tasking Framework
runs on the top of OUTPOST, and makes use of the services
provided by it. One implementation of the execution model
of the Tasking Framework is dedicated for OUTPOST as we
have mentioned in Section III.

RODOS (Real-time On-board Dependable Operating Sys-
tem) [18], [19] is a real-time operating system developed at
the German Aerospace Center (DLR) for network-centric core
avionics [20]. Currently, RODOS is developed at University of
Würzburg. The main goal of RODOS developers was to make
it simple and dependable. The publisher-subscriber messaging
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Fig. 7. TML system diagram of an application of the Tasking Framework in a real-time system for optical navigation in space.

pattern is considered in RODOS. In this pattern, publishers
label messages according to predefined topics; one or more
subscribers to a given topic receive all messages that are
published under this topic. Unlike RODOS, a task in Tasking
Framework pushes its output data into the associated channel
and notifies the input of the next task/s with no call of the
execute method of that task. However, Taking Frameworks is
not an operating system.

VII. CONCLUSION

In this paper we presented our event-driven multithreading
execution platform and software development library: Tasking
Framework. It is dedicated to develop space applications which
perform on-board data processing and sophisticated control
algorithms, and have high computational demand. Tasking
Framework has been used in already flying satellites, e.g.,
Eu:CROPIS.

Tasking Framework is neither a testing platform nor an oper-
ating system. It is a set of abstract classes with virtual methods
to develop and execute data-driven on-board software systems
on single-core as well as parallel architectures. It is compatible
with the POSIX-based real-time operating systems, mainly
RTEMS and FreeRTOS. Tasking Framework is supported with
a model-driven tool environment (TML) that can be used to
generate the API and its communication code.

Our plan is to make Tasking Framework open source. A
bare-metal implementation is also on our agenda.
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pp. 323–326, Wissenschaft und Technik Verlag Berlin, April 2001.

[4] R. Olfati-Saber, “Distributed Kalman filtering for sensor networks,” in
2007 46th IEEE Conference on Decision and Control, pp. 5492–5498,
Dec 2007.

[5] S. Theil, N. A. Ammann, F. Andert, T. Franz, H. Krüger, H. Lehner,
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[11] T. Franz, D. Lüdtke, O. Maibaum, and A. Gerndt, “Model-based
software engineering for an optical navigation system for spacecraft,”
CEAS Space Journal, no. 0123456789, 2017.

[12] C. Atkinson and T. Kühne, “Model-driven development: A metamodel-
ing foundation,” IEEE Computer Society, 2003.

[13] E. Gamma, R. Helm, J. Ralph, and J. Vlissides, “Structural patterns,”
in Design Patterns: Elements of Reusable Object-Oriented Software,
p. 196208, Addison-Wesley Professional, 1 ed., 1994.

[14] M. Fowler, “Generation gap,” in Domain-Specific Languages, p. 571573,
Addison-Wesley Signature, 2010.

[15] S. Sadvandi, F. Corbier, and E. Mevel, “Real time and interactive co-
execution platform for the validation of embedded systems,” in 9th
European congress on embedded real-time software and systems, 2018.

[16] Siemens AG, “Embedded Multicore Building Blocks .”
https://embb.io/get started.htm. accessed 2019-04-14.

[17] F. Dannemann and F. Greif, “Software platform of the DLR compact
satellite series,” in Small Satellite Systems and Services Symposium,
2014.

[18] S. Montenegro, “Network centric core avionics,” in 2009 First Interna-
tional Conference on Advances in Satellite and Space Communications,
pp. 197–201, July 2009.

[19] S. Montenegro and F. Dannemann, “RODOS real time kernel design
for dependability,” in Proceedings of DASIA 2009 Data Systems in
Aerospace, 2009.

[20] S. Montenegro, V. Petrovic, and G. Schoof, “Network centric systems
for space applications,” in 2010 Second International Conference on
Advances in Satellite and Space Communications, pp. 146–150, June
2010.

34



Towards Real-Time Checkpoint/Restore for
Migration in L4 Microkernel based Operating

Systems
Sebastian Eckl, David Werner, Alexander Weidinger, Uwe Baumgarten

Chair of Operating Systems
Technische Universität München

sebastian.eckl@tum.de, david.werner@tum.de, alexander.weidinger@tum.de, baumgaru@tum.de

Abstract—Future automotive systems will rely on multi-core
hardware support and will be gradually exposed to mixed-
criticality demands. Support for different kinds of context sen-
sitive reaction behavior (e.g. fail-operational behavior) will be
required, wherefore the concept of dynamic reconfiguration will
extend existing well-established static system configurations. A
promising approach is offered by migration of software compo-
nents and processes, based on the operating system (OS) layer.
Efficient snapshot creation within an embedded real-time envi-
ronment is thereby critical. The suggested concept extends a real-
time operating system (RTOS), based on L4 Fiasco.OC and the
Genode OS Framework, by the Real-Time Checkpoint/Restore
(RTCR) component, providing a solid base for checkpoint/restore
in L4 microkernel based OSs. Additional optimizations regarding
checkpointing were introduced and could partially be tested. The
results demonstrate current shortcomings of the purely software-
based design and underscore the assumption that a real-time
capable C/R mechanism will have to rely on the support of
dedicated hardware components.

Index Terms—checkpoint/restore, microkernel, L4, migration

I. INTRODUCTION & MOTIVATION

Future development in Cooperative Intelligent Transport
Systems (C-ITS) and Autonomous Driving will require dis-
tributed embedded real-time systems (DERTS) to cope with an
ever increasing amount of software-based functionality. Hard-
ware consolidation and system virtualization will enable future
automotive systems to provide both required computing power
and guarantee safety and security within a mixed-criticality
multi-core environment. Separation kernels (e.g. PikeOS) ap-
ply microkernel design considerations to comparably combine
software of different criticality on the same underlying hard-
ware platform. Unfortunately, existing partitioning approaches
lack an adequate degree of flexibility regarding adaptation
at runtime. Considering required future automotive context-
sensitive reaction behavior (e.g. fail-operational behavior) [1],
existing techniques will reach their limits [2].

Aside from real-time systems, virtual machine migration
techniques already provide dynamic reconfiguration for fault
tolerance/availability or efficient resource management. By
also building upon existing L4 microkernel-based principles,
a conceptual foundation addressing the migration of software
components and processes in DERTS was proposed within [3].
An L4 microkernel based operating system (OS) provides a

minimalist base for a flexible homogeneous run-time environ-
ment (RTE), allowing for mixed-critical partitioning on multi-
core hardware. Regarding migration, the OS was enhanced by
two mechanisms: migration planning and migration execution.
Execution hereby addresses functionality to support snapshot
creation, transfer and restoration of a process to be migrated.
This paper is focusing on snapshot creation, providing a design
of a high-performance checkpoint/restore (C/R) mechanism
for L4 microkernel based OS: the Real-Time Checkpoint/Re-
store (RTCR) open source software component1.

II. RELATED WORK

There already exist multiple C/R mechanisms, both imple-
mented as kernel-space and user-space solutions, and mainly
focusing on Linux or UNIX systems. A well established
example for an implementation in kernel-space is BLCR [4];
libckpt [5], CRIU [6] and Zap [7] mark user-space imple-
mentations. To improve performance of such mechanisms,
different ideas were developed over time. This varies from
compiler-based solutions, like porch [8], the checkpointing
mechanism by Bronevetsky et al. [9] or lightweight memory
checkpointing [10] over VM migration optimizations [11] to
hardware based optimizations like the ability to detect write
access to memory pages [12], as implemented in [13] and
[14]. Other possibilities are the ability to concurrently copy
memory as described in [15] or the usage of sheaved memory
as described in [16]. Additionally to the mostly Unix-based
C/R solutions there already exist implementations specifically
for microkernel-based operating systems like OSIRIS [17] or
an implementation from Luan et al. [18]. Some solutions also
address specific L4-based microkernels, like the kernel-space
implementation L4ReAnimator [19] and the user-space solu-
tion PointStart [20], both for L4Re. Luan et al. [21] designed
a solution for the seL4, which is implemented in kernel-space.
Unfortunately, existing Linux/UNIX-based solutions mostly
lack real-time focus and are not meant to be transferred to
microkernel-based OSs. Both L4Re-based solutions are not
targeting the migration aspect, i.e. the restoration on a different
machine. By placing C/R policy inside the kernel, the seL4
based solution [21] violates the microkernel principle.

1https://github.com/argos-research/genode-CheckpointRestore-
SharedMemory
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III. DESIGN ASSUMPTIONS

RTCR is realized as a component in a RTOS based on the
L4 Fiasco.OC microkernel2 and the Genode OS Framework3.
Genode systems consist of multiple components organized in
a recursive, hierarchical tree structure, leading to a minimal
trusted computing base (TCB) and a parent-child relationship
between components, whereas the parent is responsible for
the childrens’ execution and has control over their lifecycles.
A component is a program that runs in a dedicated sandbox,
equipped with all access rights and resources the correspond-
ing program needs. As root component, Genode Core has
direct access to the kernel and thus to the hardware resources,
which it hands out to other components in the form of services
(e.g. CPUs are represented by the CPU service). One important
type of resource are dataspaces (DS), which represent allocated
physical memory. Genode and L4 both provide a capability-
based security mechanism. RTCR’s design properties align
with L4 and Genode, by sticking to the capability-based
security concept and upholding a minimal TCB by designing
RTCR as a user-space component that keeps any kind of policy
outside of the kernel. Designed as a stop/start mechanism,
it guarantees the creation of a consistent snapshot, trying to
keep system interruption as minimal as possible. By being
transparent, RTCR ensures that components will be unaware
of being checkpointed. Keeping up high performance and a
system’s real-time capability is of highest priority. RTCR has
to be made fast enough to cope with timings expected in
automotive systems (e.g. a switchover-time of max. 50ms)
[1] and has to be made deterministic, to provide worst-case
timing guarantees. As a comparable L4 microkernel based C/R
mechanism has not been existing beforehand, this paper is
focusing on the former aspect and its potential optimizations.
The latter aspect will be subject to future work.

IV. REAL-TIME CHECKPOINT/RESTORE (RTCR)

RTCR exists in two distinct variants, differing in the way
in which memory content is checkpointed: the shared memory
(SM) approach (post-copy) and the redundant memory (RM)
approach (pre-copy). The SM approach is able to checkpoint
relevant (memory) data at snapshot creation time by explicitly
stopping the system for a certain period of time, in order
to create a consistent snapshot. The RM approach instead
intercepts each memory write access call at runtime in order
to copy relevant data to a backup area in parallel to program
execution. Only non-memory related data (e.g. register data)
has to be copied at snapshot creation time.

1) Shared Memory: As an user-space component, RTCR
can acquire relevant knowledge only by observing the com-
munication of a target component to the Core component and
other server components. RTCR itself consists of the following
four modules: online storage, offline storage, interception
and checkpointer. Observation is realized by using custom
implementations of all relevant services (Core services as

2https://os.inf.tu-dresden.de/fiasco/
3https://genode.org/

well as user-space services), wrapping the original services
and intercepting them. The interception ensures that desired
functionality is still provided to target components, by handing
out sessions of the custom services instead of delivering
regular ones. Methods of the custom services fulfill two tasks:
all relevant information that can be extracted from a method
call is saved to distinct data structures called online storage,
then the call is routed to the original service. The following
services are hereby intercepted: RAM, PD, CPU, RM and LOG
all from Core and TIMER. Further explanation can be found
in the official Genode documentation [22]. The interception
logic is paired with a checkpoint and a restore logic. At the
time of the checkpoint creation, the checkpointer 1) stores a
target component’s capability space, 2) copies session state
information from online storage to offline storage, which
makes the data persistent, and 3) copies the memory content
of the target component. Figure 1 depicts all components of
RTCR. The restore process of RTCR is based on the offline
storage. RTCR creates a new child component which is then
filled with the information from it. This way, the original state
of the component is recreated and it can continue its execution.

Fig. 1. Shared Memory based C/R

2) Redundant Memory: In contrast to SM, the RM version
creates a copy of the target’s memory during its runtime.
As a proof-of-concept implementation the RM version uses
instruction emulation. Apart from the different way of memory
checkpointing, the workflow of SM and RM is identical.
Genode offers the possibility to create managed DSs which, in
contrast to regular DSs, do not represent a contiguous range
of physical addresses but a range of virtual ones. Accessing
a managed DS not backed by a regular DS leads to a page
fault. Using the custom RAM service of RTCR, it is possible to
hand out managed instead of regular DSs to the checkpointing
target. Internally, RTCR also creates a regular DS but does not
attach it to the managed DS. This way, the target produces
a page fault each time it tries to write to its memory. The
page fault is received by a fault handler in RTCR. Having
access to the regular DS that is intended to store the target’s
memory and the DS that represents a redundant copy, the
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fault handler can emulate the write call to DS_orig and the
currently valid DS_copy instance. Therefore, the fault handler
determines the corresponding instruction by inspecting the
instruction pointer of the thread performing the access. The
retrieval of the instruction from the binary is then followed
by its decoding. After decoding the instruction, the memory
access is performed on both DSs. Within RM checkpointing,
an incremental approach is utilized. For the first checkpointing
iteration, (DS_copy) marks a complete memory snapshot. For
consecutive checkpointing iterations, only modifications since
the last memory checkpoint are captured within instances of
DS_inc, e.g. DS_inc_1. All other areas that don’t have to be
checkpointed again are referencing their precursor snapshot.
At checkpoint time, the target is halted, all non-memory
data is stored and redundant memory writing is directed to
a new instance of DS_inc, e.g. DS_inc_2. At this point,
target execution is resumed and snapshot creation is started
in parallel. A flattener thread is hereby merging the content
of the old DS_inc, e.g. DS_inc_1, into DS_copy, leading to a
consistent memory snapshot. The behavior of the instruction
emulation and the redundant memory copying is depicted in
figure 2. In the future, the inefficient instruction emulation will
be replaced by a dedicated hardware tracing (and copying)
component (see chapter V-B).

Fig. 2. Redundant Memory based C/R, with managed DSs (orange) and
regular DSs (green)

V. RTCR OPTIMIZATIONS

As can be seen from figure 6, main bottlenecks of the
SM approach are the strict sequential workflow of RTCR
and the long-lasting duration of memory-related checkpointing
aspects (see methods _prepare_ram_sessions() and _check-
point_dataspaces() and their corresponding sub-methods). The
former is part of the online-to-offline copying and sets up
the DS translations while the latter is responsible for memory
checkpointing. As during a regular workload there will be a
lot more checkpoints created than in the end will have to be
restored, our proposed optimizations only target the former
process. Main focus of optimization methods hereby lies on
reducing the overall snapshot creation time. Considering as
well the RM approach, a current bottleneck is the inefficient

emulation-based tracing of memory accesses. As SM and
RM version of RTCR share the same code for most of their
implementations, optimizations regarding these shared parts
can be applied to both.

A. Software-based optimizations

Based on the mechanisms described in chapter IV, several
software-based optimizations have been designed and imple-
mented.

1) Incremental checkpointing: Already applied in the basic
RM approach, incremental checkpointing is a technique that
enables the checkpointing process to only store memory areas
which were modified since the last time a checkpoint was
created, resulting in reduced amount of memory that needs
to be copied. The mechanism requires additional information
about write accesses to DSs, wherefore managed DSs are
utilized (see chapter IV-2). The managed DSs are hereby
backed by multiple smaller regular DSs. The number of regular
DSs per managed DS depends on the desired granularity that
shall be achieved. Initially the designated DSs are detached
from the managed DS. When the memory area is first accessed,
a page fault is triggered. A fault handler then attaches the
regular DS that corresponds to the accessed address and marks
it as dirty. During the next snapshot creation only the content
of regular DSs that have been marked dirty needs to be copied.
After the checkpointer is finished, it detaches all regular DSs
from all managed DSs, so that the dirty flagging can be
repeated for the next iteration of the checkpointing process.

2) Read-Only Memory: Both the emulation mechanism of
the RM approach and the incremental optimization mecha-
nism exploit nondeterministic page faults for memory access
detection. Hereby, both read and write accesses trigger page
faults although only the detection of write accesses is required.
Albeit the system is already able to distinguish the type of
access responsible for a page fault, the regular DSs need to
be attached either way, to be able to read from/write to them.
The concept of read-only memory (ROM) describes memory
areas which can be read but not written to. Hereby, read-
only attachments can be realized by modifying the attachment
mechanism of Genode region maps [22]. Each time a DS
is attached to an address space, a mapping is created. By
enabling these mappings to be read-only, any type of DS that
is attached can be made non-writeable implicitly. As part of
the address resolution it can be determined whether a write to
a DS corresponding to a certain mapping is allowed or not.
The read-only attachments thus allow writable DSs to become
read-only depending on the way they were attached to the
address space.

3) Copy-on-write: Copy-on-write (COW) is an optimiza-
tion for the SM approach that targets the decoupling of the
memory copying process from the rest of the checkpointing,
trying to mitigate the halting of the target component. As com-
ponents constantly alter their state during execution, there is
no other way than interrupting to create a consistent snapshot.
Applying COW, a target is allowed to continue its execution
before the memory copying is started. Should the target access
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Fig. 3. Copy-on-write mechanism

a memory area that is not yet checkpointed, the COW logic
performs the copying on demand. The COW functionality
is hereby integrated in the incremental mode of RTCR, by
piggybacking the corresponding logic on the fault handler that
is responsible for marking the regular DSs as dirty. As the
fault handler of the incremental approach already detects the
first access to each DS after every checkpointing procedure,
it is easy to combine this detection with a copying process
if the affected DS is not yet checkpointed. Figure 3 shows
the additional COW behavior of the fault handler. The left
side marks the case, in which the DS is already copied by
the checkpointer. Hereby, the fault handler acts like before
the COW logic was added and simply attaches and marks the
regular DS. On the right side, the DS is not yet copied and
the fault handler executes the COW logic before it attaches
the regular DS and marks it as dirty.

4) Parallelization: As multiple CPU cores allow for the
parallel execution of threads, a multi-threaded implementation
of RTCR might accelerate the strict sequential basic workflow.
To be able to choose a fitting parallelization technique, first
of all the dependencies between all checkpointing tasks need
to be analyzed. As a parallel execution of dependent meth-
ods is impossible, dependencies represent a limitation to the
degree of parallelism. The parallelization scheme depicted in
figure 4 shows a combination of both horizontal and vertical
parallelization [23]. Based on the identified dependencies and
conflicting accesses to data structures, a horizontal approach
clusters RTCR in one strict sequential phase in the beginning
and one parallel phase in the end of the checkpointing process.
Parallelization only affects parts of the capturing of the session
state (online-to-offline copying, see _prepare_XX_sessions())
and the copying of memory contents (see _checkpoint_datas-
paces()). As most of the checkpointing tasks require very little
amounts of time, vertical parallelization is only applied to the
memory copying checkpointing methods (see several instances
of _checkpoint_dataspaces()). Multiple threads can operate on
the DS translation list and copy DS contents in parallel.

B. Hardware-based optimization

As main bottleneck of the pure software-based implementa-
tions, the duration of tracing memory access and checkpointing
memory could be identified. In order to accelerate the existing
solutions, a combination between the RTOS and reconfigurable

Fig. 4. Dependency graph showing the dependencies between individual
RTCR methods and the applied parallelization strategy

hardware seemed promising. Addressing the aspects efficient
memory tracing and copying, a custom memory interceptor
was developed with the help of a FPGA. This hardware
component redirects all memory accesses done by the OS to a
FPGA based peripheral and intercepts memory access in order
to distinguish between read and write access calls, trace write
calls and write respective data to a redundant backup during
runtime (see figure 5). The work is based on the concept of
an AXI-based memory bridge done by Li et al. [24].

Fig. 5. Hardware-based memory interceptor: traditional memory access
(orange) vs. redirected memory access and redundant copying (green) and
gathering tracing information (green dotted)

VI. IMPLEMENTATION

The proposed OS components have been implemented
prototypically based on a modified version of the L4 Fi-
asco.OC and the Genode OS Framework (version 16.08).
The underlying hardware platform is based on the ARMv7-
A architecture, represented in form of an emulated Cortex-
A9 quad-core processor (QEMU PBX-A9; QEMU in version
≥2.9). FPGA-based implementation was done on physical
hardware, utilizing the Xilinx Zynq-7000 SoC, based on the
Digilent Zybo and Avnet Zedboard.

VII. EVALUATION

Tests were conducted based on an unoptimized SM version
of RTCR to investigate RTCR’s basic performance and based
on a modified version, containing the incremental optimization
mechanism. The tests were executed on QEMU PBX-A9 and
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Fig. 6. Base Case: Shared Memory - Full Mode

consist of a component that can be configured to allocate a
certain amount of memory and modifies allocated memory
within an endless loop. Variations were done regarding scaling
the amount of memory and the number of DSs to be check-
pointed. Multiple iterations of the checkpointing process with
changing amounts of target memory were done.

A. Base case: Full Mode

Within the base case, RTCR is using the full checkpointing
mode, meaning that all memory allocated by a target compo-
nent has to be saved. Several scenarios were tested, whereas
varying amount of memory (up to 128MB in total) was check-
pointed either represented by a single DS or split into a varying
number of DSs, exemplarily demonstrated by the granularity
levels 8, 32 and 64. Allocated memory was thereby distributed
equally over the DSs. As can be observed in figure 7, the
duration of the checkpointing process scales linearly with the
amount of memory that needs to be checkpointed. Reason
for that is the explicit copying of memory contents using a
software-based memcpy function. With the same amount of
memory distributed over more DSs the duration increases even
more. So, in general, the performance of the checkpointer gets
worse with an increasing number of DSs. This is caused by
the management overhead that the handling of multiple DSs
entails. However, if the respective DS size exceeds 1MB, the
DS induced performance loss decreases.

B. Incremental Mode

In the best case no modifications were done, so using the
incremental checkpointing mode means no memory has to be
saved at all. Therefore, worst case runtime shall be evaluated,
which is equivalent to full mode (see chapter VII-A). The
target component hereby allocates 32MB of memory in a
single managed DS. RTCR fills the managed DS according to
the chosen granularity with a varying number of regular DSs.
The size of a regular DS is thereby made up by granularity
* page size (which is 4KB, the smallest possible unit for
a regular DS). As depicted in figure 8, the range of tested
sizes reaches from 128*4KB = 512KB to 1024*4KB = 4MB
per regular DS. A greater number of pages means coarser
granularity regarding checkpointing, so less regular DSs per

managed DS are used (e.g. 32MB / 4MB = 8 DSs), which leads
to a better performance of the checkpointer. Nevertheless,
incremental checkpointing of the full managed DS performs
drastically worse than the full mode in chapter VII-A. If the
target component allocates large amounts of memory while the
checkpointer is configured to use incremental checkpointing,
the mechanism will trigger the creation of a vast amount
of regular DSs. The kernel is unable to handle that many
capabilities, resulting in an overflow of the capability space
in Core. As capability spaces can not be arbitrarily large, the
only way to prevent this scenario is to choose a reasonable
size for the granularity. However, this limits the effectiveness
of the incremental checkpointing as a coarser granularity
generally leads to the copying of more unmodified memory
areas. Considering the test case, creation of more than 32MB
/ (128*4KB) = 64 DSs leads to a system crash.
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VIII. FUTURE WORK

Current shortcomings affect the RTCR restoration process,
as RTCR currently is limited to creating a memory dump
of components, due to being unable to C/R all required Fi-
asco.OC capabilities. Ongoing development targets the porting
of RTCR from outdated Genode 16.08 to the most recent
Genode version. For performance comparison, RTCR shall
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also be ported to the combination of seL4 and Genode.
Further software-based optimizations include the porting of
RTCR to Core to reduce IPC, and extending parallelization
to multiple instances of RTCR running simultaneously to
increase the throughput of snapshot creation. Further hard-
ware optimization approaches target the utilization of existing
co-processors (e.g. ARM Cortex-M) or the development of
additional hardware components, like custom FPGA-based
co-processors (e.g. based on AXI CDMA) or the modifica-
tion of existing CPU design (e.g. MMU adaption based on
RISC-V), for acceleration of memory tracing and copying.
Further evaluation shall target the COW and parallelization
optimization mechanisms. Coupling RTCR with the hardware-
based memory interceptor will also allow for tests of the RM
version. As testing based on emulation is insufficient, physical
hardware platforms shall be utilized (e.g. NXP i.MX6 based).

IX. CONCLUSION

The design of RTCR provides a solid base for C/R in
L4 microkernel based OSs. Additional optimizations for in-
creasing performance were introduced and could partially be
tested. Software-based optimizations alone most likely won’t
lead to a real-time capable C/R mechanism. Future work
will therefore concentrate on the development of dedicated
hardware components for further acceleration.
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In this presentation, we will introduce a new real-time
gang scheduling framework in Linux, called RT-Gang [2], and
provide a brief tutorial and a demo of using the framework in
a self-driving car application [3].

Emerging safety-critical real-time control systems in auto-
motive and aviation applications often consist of a number
of highly computationally expensive and data intensive work-
loads (e.g., deep neural networks) with strict real-time re-
quirements for agile control (e.g., 50Hz). Guaranteeing timely
execution of these real-time tasks is an important requirement
for safety of the system. However, it is challenging to pro-
vide such a guarantee on today’s highly integrated embedded
computing platforms because they often show unpredictable
and extremely poor worst-case timing behaviors that are hard
to understand, analyze, and control [4], [8]—chiefly due to
interference in shared memory hierarchies. Broadly, timing
unpredictability is a serious problem especially in automotive
and aviation industries. For example, Bosch, a major auto-
motive supplier, reported “predictability on high-performance
platforms” as a major industrial challenge for which the
industry is actively seeking solutions from the research com-
munity [6]. In aviation, the problem was dubbed as “one-
out-of-m” problem [7] because the current best practice for
certification, which requires evidence of bounded interference,
is to disable all but one core of a multicore processor [5].

RT-Gang [2] is a new real-time gang scheduling framework
implemented in Linux to address the timing unpredictability
problem on COTS multicore platforms for safety-critical real-
time applications. In RT-Gang, all threads of a parallel real-
time task form a real-time gang and the scheduler globally
enforces a one-gang-at-a-time scheduling policy. When a
real-time task is released, all of its threads are scheduled
simultaneously if it is the highest priority real-time task, or
none at all if a higher priority real-time task is currently in
execution. Any idle cores, if exist, can be used to schedule
best-effort tasks but their shared memory access rates are
strictly regulated by a memory throttling mechanism to bound
their impact to the real-time task. Specifically, each real-time
task defines its tolerable maximum memory bandwidth budget,
which is strictly enforced by a kernel level regulator for any
co-scheduled best-effort tasks. (see Figure 1.)

RT-Gang eliminates the problem of contention in the shared
memory hierarchy between real-time tasks by executing only
one real-time task at any given time, which effectively trans-
forms parallel real-time task scheduling on a multicore into the
well-understood uni-core real-time scheduling problem. Be-

Core 1

Core 2

Core 3

Core 4
t1 t2 t3 t2 t1

timet1job 
release

completion

best-effortreal-time
t1 t2 t3< <

Fig. 1. Illustration of RT-Gang

cause of the strong temporal isolation guarantee offered by RT-
Gang, a real-time task’s worst-case execution time (WCET)
can be tightly bounded without making strong assumptions
about the underlying hardware. Thus, RT-Gang can improve
system schedulability while providing a mechanism to safely
utilize all cores of a multicore platform.

RT-Gang is currently implemented as a ”feature” of
the standard Linux SCHED FIFO real-time scheduler (ker-
nel/sched/rt.c), which can be enabled or disabled dynamically
at run-time [1]. In this presentation, we will provide a quick
tutorial on how to use the feature, and demonstrate its effects
on a real self-driving car application [3], which uses deep
neural networks (processed by TensorFlow).
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Towards Real-Time Checkpoint/Restore for Migration in L4 Microkernel based Operating
Systems

Sebastian Eckl, David Werner, Alexander Weidinger, Uwe Baumgarten

Analyzable and Practical Real-Time Gang Scheduling on Multicore Using RT-Gang
Waqar Ali, Michael Bechtel, Heechul Yun

Closing

15:30 – 16:00 Coffee Break

Wednesday, July 10th – Friday, July 12th 2019
ECRTS main conference.

© 2019 TU Dresden and Leibniz Universität Hannover. All rights reserved.


	Message from the Chairs
	Program Committee
	Keynote Talk
	Session 1: Static Analysis
	ARA: Automatic Instance-Level Analysis in Real-Time Systems
	Boosting Job-Level Migration by Static Analysis

	Session 2: The Wild World
	Experiments for Predictable Execution of GPU Kernels

	Session 3: Platforms
	Event-Driven Multithreading Execution Platform for Real-Time On-Board Software Systems
	Towards Real-Time Checkpoint/Restore for Migration in L4 Microkernel based Operating Systems
	Analyzable and Practical Real-Time Gang Scheduling on Multicore Using RT-Gang

	Program

