
Sebastian Eckl, M.Sc.

David Werner, M.Sc.

Alexander Weidinger, B.Sc.

Prof. Dr. Uwe Baumgarten

Technische Universität München

Informatics Department

Chair of Operating Systems (F13)

Renningen, July 9th 2019

Towards Real-Time Checkpoint/Restore for 
Migration in L4 Microkernel based Operating 
Systems



1. Background: KIA4SM

2. Genode OS Framework: Foundation

3. Real-Time Checkpoint/Restore (RTCR)

4. Hardware-based Optimizations

5. Evaluation

6. Ongoing Work

7. Conclusion

2S. Eckl, D. Werner, A. Weidinger, U. Baumgarten | TUM F13

Outline 



1. Vision: Online Reconfiguration via Migration 

S. Eckl, D. Werner, A. Weidinger, U. Baumgarten | TUM F13 3

• Idea: Adapt concept of virtual 
machine (live) migration to the 
area of CPS

• Use Case
• Fault Tolerance/Availability

• Efficient Resource Management 
(Load Balancing/Energy Saving)

• Scalability

• Challenge: Flexibility vs. 
Reliability/Safety

Migration SignalMonitor Data

Monitor

Local
Validation

Planning

Migration



1. Concept & Implementation

S. Eckl, D. Werner, A. Weidinger, U. Baumgarten | TUM F13 4

• Operating System (Migration 
Execution)

• Homogeneous RTE (L4 Microkernel)

• Mixed-Critical Partitioning on Multi-
Core 

• Migration Support (Components)

• ARMv7 & L4 Fiasco.OC / Genode



5S. Eckl, D. Werner, A. Weidinger, U. Baumgarten | TUM F13

2. Genode OS Framework

● Component Hierarchy (Minimal TCB)

● Parent/Child-Relationship

● Capability-based Security

● Genode Core Services

Information in this chapter is based on ‚Genode Foundations‘ manual [1] 



6S. Eckl, D. Werner, A. Weidinger, U. Baumgarten | TUM F13

2. Genode: Component Hierarchy

Hierarchy leads to Parent-Child 
relationships:

• Responsibility for:
• Resource budgets
• Execution environment

• Control over:
• Lifecycle
• Relationships



7S. Eckl, D. Werner, A. Weidinger, U. Baumgarten | TUM F13

2. Genode: Core Services & Capabilities 

● PD
● Represents the protection domain of a component (task)
● Provides: virtual address space (region map), capability space, resource budgets

(memory & capabilities)

● CPU
● Allows creation, manipulation &

destruction of threads
● Assignment of threads to CPU cores

(affinity)

● ROM
● Offers access to boot modules
● Binary is encapsuled in a dataspace



8S. Eckl, D. Werner, A. Weidinger, U. Baumgarten | TUM F13

3. Real-Time Checkpoint/Restore (RTCR) 

Topics:

● Properties

● Shared Memory Checkpointing

● Redundant Memory Checkpointing

● Incremental Memory Checkpointing

Notes:

● Proof of concept implementations

● Current focus: fast checkpointing procedures

● Current priority: best possible performance

● Future work: Predictability analysis



● Stop/Start mechanism
● Consistent snapshot
● Goal: Minimal stop time

● Transparency
● Components are unaware of checkpoint logic
● No self-checkpointing of components

● Security
● Conformity to L4 Microkernel design principles
● Keep minimal TCB

● Userspace: Keep C/R logic out of kernel

9S. Eckl, D. Werner, A. Weidinger, U. Baumgarten | TUM F13

3. RTCR: Properties



10S. Eckl, D. Werner, A. Weidinger, U. Baumgarten | TUM F13

3. RTCR: Variants and Optimizations

RTCR offers different variants:

● Shared Memory Checkpointing (SM) :
● Explicit copying of target‘s memory contents
● Target‘s memory is shared with RTCR (parent)

● Redundant Memory Checkpointing (RM) :
● Write emulation to multiple memory areas
● Creation of redundant copy during runtime of the target

● Only difference: memory checkpointing mechanism

RTCR contains software-based optimizations:

● Incremental Checkpointing (Inc)

● Copy-on-write (CoW)



11S. Eckl, D. Werner, A. Weidinger, U. Baumgarten | TUM F13

3. RTCR: Overview



12S. Eckl, D. Werner, A. Weidinger, U. Baumgarten | TUM F13

3. RTCR: Online/Offline Storage 
● Online storage

● Saves target state (session info) during runtime
● Consists of mutable data structures

● Offline storage
● Transformed version of online storage
● Created during checkpoint process
● Immutable
● Represents the snapshot



13S. Eckl, D. Werner, A. Weidinger, U. Baumgarten | TUM F13

3. RTCR: Checkpointing Procedure 

1. Storing state of the capability space

● Identify location of capability space in target memory

● Saving information about capability space layout

2. Copying information from online to offline storage

● Access online storage structures for each intercepted service

● Iterate over online storage structures

● Copy all information to corresponding offline storage structure

3. Copying Memory contents (depending on RTCR variant)

● SM: detection of target‘s dataspaces + explicit copying

● RM: no copying needed (implicitly created copy already exists)

● Inc: Identification of modified memory areas + explicit copying



14S. Eckl, D. Werner, A. Weidinger, U. Baumgarten | TUM F13

3. Shared Memory Checkpointing



15S. Eckl, D. Werner, A. Weidinger, U. Baumgarten | TUM F13

3. Redundant Memory Checkpointing - Emulation



16S. Eckl, D. Werner, A. Weidinger, U. Baumgarten | TUM F13

3. Redundant Memory Checkpointing - Flattening



17S. Eckl, D. Werner, A. Weidinger, U. Baumgarten | TUM F13

3. Incremental Memory Checkpointing 

Idea: Only modified memory regions are checkpointed
→ Less amount of data to copy
→ Shorter stop time



18S. Eckl, D. Werner, A. Weidinger, U. Baumgarten | TUM F13

3. RTCR: Other Software-based Optimizations 

● Read-only memory (ROM)

● Copy-on-write (COW)

● Parallelization (vertical & horizontal)

Still under development / testing!



19S. Eckl, D. Werner, A. Weidinger, U. Baumgarten | TUM F13

4. Hardware-based Optimizations 

Purely Software-based variants of RTCR:

● Naive implementation

● RM seems a bit hacky

Solution:

● Development of HW accelerators that provide the similar functionality

● Usage of FPGAs



Development of a custom co-processor to accelerate memory copying
● FPGA-based (Xilinx Zynq-7000)
● DMA approach (AXI CDMA)

RTCR provides:
● Start addresses of memory area
● Size of both memory areas

20S. Eckl, D. Werner, A. Weidinger, U. Baumgarten | TUM F13

4. HW-based Opt: Custom Co-Processor



Custom interceptor component for efficient memory tracing and copying
● FPGA-based (Xilinx Zynq-7000)
●  Redundant memory copying in HW

RTCR provides:
● Start addresses of memory area
● Size of both memory areas

  

21S. Eckl, D. Werner, A. Weidinger, U. Baumgarten | TUM F13

4. HW-based Opt: Custom Memory Interceptor



22S. Eckl, D. Werner, A. Weidinger, U. Baumgarten | TUM F13

5. Evaluation 

Memory checkpointing is the bottleneck!

Test Cases:

● Impact of amount of memory used by the component

● Impact of number of dataspaces

● Impact of granularity for incremental checkpointing



23S. Eckl, D. Werner, A. Weidinger, U. Baumgarten | TUM F13

5. Evaluation: Impact of Dataspace Size  



24S. Eckl, D. Werner, A. Weidinger, U. Baumgarten | TUM F13

5. Evaluation: Impact of Dataspace Count  



25S. Eckl, D. Werner, A. Weidinger, U. Baumgarten | TUM F13

5. Evaluation: Optimal Granularity  



26S. Eckl, D. Werner, A. Weidinger, U. Baumgarten | TUM F13

6. Ongoing Work
● Parallelization

● Adapting RTCR to multithreading
● Experimenting with multiple instances of RTCR running simultaneously

● HW optimizations
● Improving HW interceptor: AXI-Lite as proof of concept

→ AXI-Stream / AXI-Full for speedup
● Checkpointing acceleration via MicroBlaze SoftCore processor
● CPU modification based on RISC-V

● Porting of RTCR to seL4/Genode

● Fixing existing restorer problems

● Testing & Evaluation



27S. Eckl, D. Werner, A. Weidinger, U. Baumgarten | TUM F13

7. Conclusion 

● Solid C/R foundation for L4 microkernel based OS 

● Solely SW based C/R might not be fast enough on current COTS 
 HW

● Development of dedicated components to support & accelerate 
specific aspects of C/R in HW



28S. Eckl, D. Werner, A. Weidinger, U. Baumgarten | TUM F13

Sources

[1] https://genode.org/documentation/architecture/index


	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28

