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1. Vision: Online Reconfiguration via Migration 
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• Idea: Adapt concept of virtual 
machine (live) migration to the 
area of CPS

• Use Case
• Fault Tolerance/Availability

• Efficient Resource Management 
(Load Balancing/Energy Saving)

• Scalability

• Challenge: Flexibility vs. 
Reliability/Safety

Migration SignalMonitor Data

Monitor

Local
Validation

Planning

Migration



1. Concept & Implementation
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• Operating System (Migration 
Execution)

• Homogeneous RTE (L4 Microkernel)

• Mixed-Critical Partitioning on Multi-
Core 

• Migration Support (Components)

• ARMv7 & L4 Fiasco.OC / Genode
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2. Genode OS Framework

● Component Hierarchy (Minimal TCB)

● Parent/Child-Relationship

● Capability-based Security

● Genode Core Services

Information in this chapter is based on ‚Genode Foundations‘ manual [1] 
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2. Genode: Component Hierarchy

Hierarchy leads to Parent-Child 
relationships:

• Responsibility for:
• Resource budgets
• Execution environment

• Control over:
• Lifecycle
• Relationships
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2. Genode: Core Services & Capabilities 

● PD
● Represents the protection domain of a component (task)
● Provides: virtual address space (region map), capability space, resource budgets

(memory & capabilities)

● CPU
● Allows creation, manipulation &

destruction of threads
● Assignment of threads to CPU cores

(affinity)

● ROM
● Offers access to boot modules
● Binary is encapsuled in a dataspace
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3. Real-Time Checkpoint/Restore (RTCR) 

Topics:

● Properties

● Shared Memory Checkpointing

● Redundant Memory Checkpointing

● Incremental Memory Checkpointing

Notes:

● Proof of concept implementations

● Current focus: fast checkpointing procedures

● Current priority: best possible performance

● Future work: Predictability analysis



● Stop/Start mechanism
● Consistent snapshot
● Goal: Minimal stop time

● Transparency
● Components are unaware of checkpoint logic
● No self-checkpointing of components

● Security
● Conformity to L4 Microkernel design principles
● Keep minimal TCB

● Userspace: Keep C/R logic out of kernel
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3. RTCR: Properties
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3. RTCR: Variants and Optimizations

RTCR offers different variants:

● Shared Memory Checkpointing (SM) :
● Explicit copying of target‘s memory contents
● Target‘s memory is shared with RTCR (parent)

● Redundant Memory Checkpointing (RM) :
● Write emulation to multiple memory areas
● Creation of redundant copy during runtime of the target

● Only difference: memory checkpointing mechanism

RTCR contains software-based optimizations:

● Incremental Checkpointing (Inc)

● Copy-on-write (CoW)



11S. Eckl, D. Werner, A. Weidinger, U. Baumgarten | TUM F13

3. RTCR: Overview
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3. RTCR: Online/Offline Storage 
● Online storage

● Saves target state (session info) during runtime
● Consists of mutable data structures

● Offline storage
● Transformed version of online storage
● Created during checkpoint process
● Immutable
● Represents the snapshot
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3. RTCR: Checkpointing Procedure 

1. Storing state of the capability space

● Identify location of capability space in target memory

● Saving information about capability space layout

2. Copying information from online to offline storage

● Access online storage structures for each intercepted service

● Iterate over online storage structures

● Copy all information to corresponding offline storage structure

3. Copying Memory contents (depending on RTCR variant)

● SM: detection of target‘s dataspaces + explicit copying

● RM: no copying needed (implicitly created copy already exists)

● Inc: Identification of modified memory areas + explicit copying
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3. Shared Memory Checkpointing



15S. Eckl, D. Werner, A. Weidinger, U. Baumgarten | TUM F13

3. Redundant Memory Checkpointing - Emulation
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3. Redundant Memory Checkpointing - Flattening
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3. Incremental Memory Checkpointing 

Idea: Only modified memory regions are checkpointed
→ Less amount of data to copy
→ Shorter stop time
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3. RTCR: Other Software-based Optimizations 

● Read-only memory (ROM)

● Copy-on-write (COW)

● Parallelization (vertical & horizontal)

Still under development / testing!
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4. Hardware-based Optimizations 

Purely Software-based variants of RTCR:

● Naive implementation

● RM seems a bit hacky

Solution:

● Development of HW accelerators that provide the similar functionality

● Usage of FPGAs



Development of a custom co-processor to accelerate memory copying
● FPGA-based (Xilinx Zynq-7000)
● DMA approach (AXI CDMA)

RTCR provides:
● Start addresses of memory area
● Size of both memory areas

20S. Eckl, D. Werner, A. Weidinger, U. Baumgarten | TUM F13

4. HW-based Opt: Custom Co-Processor



Custom interceptor component for efficient memory tracing and copying
● FPGA-based (Xilinx Zynq-7000)
●  Redundant memory copying in HW

RTCR provides:
● Start addresses of memory area
● Size of both memory areas
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4. HW-based Opt: Custom Memory Interceptor
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5. Evaluation 

Memory checkpointing is the bottleneck!

Test Cases:

● Impact of amount of memory used by the component

● Impact of number of dataspaces

● Impact of granularity for incremental checkpointing
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5. Evaluation: Impact of Dataspace Size  
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5. Evaluation: Impact of Dataspace Count  
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5. Evaluation: Optimal Granularity  
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6. Ongoing Work
● Parallelization

● Adapting RTCR to multithreading
● Experimenting with multiple instances of RTCR running simultaneously

● HW optimizations
● Improving HW interceptor: AXI-Lite as proof of concept

→ AXI-Stream / AXI-Full for speedup
● Checkpointing acceleration via MicroBlaze SoftCore processor
● CPU modification based on RISC-V

● Porting of RTCR to seL4/Genode

● Fixing existing restorer problems

● Testing & Evaluation
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7. Conclusion 

● Solid C/R foundation for L4 microkernel based OS 

● Solely SW based C/R might not be fast enough on current COTS 
 HW

● Development of dedicated components to support & accelerate 
specific aspects of C/R in HW
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Sources

[1] https://genode.org/documentation/architecture/index
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