Boosting Job-Level Migration by Static Analysis

Workshop on Operating Systems Platforms for Embedded Real-Time Applications
July 09, 2019

Tobias Klaus, Peter Ulbrich, Phillip Raffeck, Benjamin Frank,
Lisa Wernet, Maxim Ritter von Onciul, Wolfgang Schroder-Preikschat

Friedrich-Alexander-Universitat Erlangen-Nurnberg (FAU)

SCHR603/9-2 A -
03/14-2 G .
CRC/TRR 89 Project C1 WA > 0704/88325 ERLANGEN-NURNBERG

Multi-Core Scheduling

Multi-Core Systems

« Static allocation of tasks to cores

Core 1: ! 1 |

t
Core 2: - } }

Boosting job-level migration by static analysis

Multi-Core Scheduling

Multi-Core Systems

« Static allocation of tasks to cores
— Poor utilization and schedulability

Core 1: ! 1 |

t
Core 2: - } }

Boosting job-level migration by static analysis

Multi-Core Scheduling

Multi-Core Systems

« Static allocation of tasks to cores
— Poor utilization and schedulability

i T AN H H
Core 1: ‘ . ‘ 3 ‘ ‘ ¢ Solution: Full Migration

+ Dynamic (re)allocation of tasks

 Good utilization and schedulability
Core 2: - ‘ ‘ !

Boosting job-level migration by static analysis

Multi-Core Scheduling

Multi-Core Systems

« Static allocation of tasks to cores
— Poor utilization and schedulability

T
Core 1. T3a s ‘ ‘ t Solution: Full Migration?

ore 1: f ; f f f

0 20 40 60 & 100 + Dynamic (re)allocation of tasks
T e .
+ Good utilization and schedulability
T3b t

Core 2: 1 1

Boosting job-level migration by static analysis

Multi-Core Scheduling

Multi-Core Systems

« Static allocation of tasks to cores
— Poor utilization and schedulability

T
Core 1. T3a s ‘ ‘ t Solution: Full Migration?
ore 1: f ; f \ f
0 20 40 60 & 100 + Dynamic (re)allocation of tasks
T e -
+ Good utilization and schedulability
Core 2: i ; | ! Impractical in real-time systems

Boosting job-level migration by static analysis

Multi-Core Scheduling

Multi-Core Systems
- Static allocation of tasks to cores
— Poor utilization and schedulability

T
Core 1: ‘ Ta ‘ N ‘ ‘ ‘ t Solution: Full Migration?
ore 1: f f f \ f
0 20 40 60 & 100 + Dynamic (re)allocation of tasks
T e -
+ Good utilization and schedulability
Core 2: - | ; t " — Impractical in real-time systems

Static Allocation Again?

« Split tasks to appropriate size

Boosting job-level migration by static analysis

Splitting the Execution Size versus Costs

int32_t x = 0;
uintl6é_t y = foo()
for (uint8.t i = 0; i < 5; i++) { Find Appropriate Split Points
x t=y * bar([i];
}
int64_t z = x * 4711;
for (uint8_t j = 0; j < 5; j++) {
z += baz[j];

e e R =) T L S R

}

return z;

—_
(=)

Boosting job-level migration by static analysis 2

Splitting the Execution Size versus Costs

Lifespan:
xyiz j
1 int32_t x = O,
2 uintl6_t y = o();
3 for (uint8_t i = 0; i < 5; i++) | Find Appropriate Split Points
4 x 4=y * barli]; | « Static analysis
5}
6 int64_t z = x * 4711;
7 for (uint8_t j = 0; Jj < 5; j++)
8 z += baz[j];
9}

—_
(=)

return z;

Boosting job-level migration by static analysis 2

Splitting the Execution Size versus Costs

Lifespan:
xyiz j
1 int32_t x = O,
2 uintl6_t y = o();
3 for (uint8_t i = 0; i < 5; i++) | Find Appropriate Split Points
4 x 4=y * barli]; | « Static analysis
> - Consider WCET
6 int64_t z = x * 4711;
7 for (uint8_t j = 0; j < 5; J++)
8 z += bazl[jl;
9}

—_
(=)

return z;

Boosting job-level migration by static analysis 2

Splitting the Execution Size versus Costs

Lifespan:
xyiz j
1 int32_t x = O,
2 uintl6_t y = o();
3 for (uint8 t i = 0; i < 5; i++) | Find Appropriate Split Points
4 x 4=y * barli]; | « Static analysis
> + Consider WCET
6 int64d_t z = x * 4711; o))
7 for (uint8_t j = 0; j < 5; j++) * Minimize migration cost
8 z += baz[j];
9}

—_
(=)

return z;

Boosting job-level migration by static analysis 2

Challenges
« Split tasks to target WCET

Boosting job-level migration by static analysis 3

Challenges
« Split tasks to target WCET

+ Reduce migration cost

Boosting job-level migration by static analysis 3

Challenges
« Split tasks to target WCET

+ Reduce migration cost

Approach
— Job-Level Migration

— Static Analysis

— Optimization within two dimensions

Boosting job-level migration by static analysis 3

’Split point graph ‘

Branches

Randomly sized
scheduling units

Optimization
within WCET and
migration cost

Uniformly sized
scheduling units

Boosting job-level migration by static analysis 4

’Split point graph ‘

Branches

Randomly sized
scheduling units

Optimization
within WCET and
migration cost

Uniformly sized
scheduling units

Boosting job-level migration by static analysis 5

Static analysis

BB,
BBj BBy,

Basic Procedure

Bs 1. Create control-flow graph
2. WCET analysis
3. Lifespan analysis

w| [
>
(O]

BB,

Boosting job-level migration by static analysis 6

Static analysis

Basic Procedure

1. Create control-flow graph
2. WCET analysis Split-point candidates
3. Lifespan analysis

Boosting job-level migration by static analysis 6

Split-Point Graphs
‘ Split-point graph ‘

Branches

Randomly sized
scheduling units

Optimization
within WCET and
migration cost

Uniformly sized
scheduling units

Boosting job-level migration by static analysis 7

General Concept: Split-Point Graphs

Control-Flow Graph

Boosting job-level migration by static analysis 8

General Concept: Split-Point Graphs

Control-Flow Graph Intermediate Graph
Ey
|
w1 w2
w3
Wy

Boosting job-level migration by static analysis 8

General Concept: Split-Point Graphs

Control-Flow Graph Intermediate Graph Split-Point Graph
Ey
- W2
w1 w2
w3
Wy wl w3
Wy
)
| ws

Boosting job-level migration by static analysis 8

General Concept: Split-Point Graphs

Control-Flow Graph Intermediate Graph Split-Point Graph

« Static analysis of tasks w.r.t. WCET and resident-set size

« Split-point graphs capture split-point candidates

+ Horizontal cuts: finding split points with low migration cost
|

| ws

BBr

Boosting job-level migration by static analysis 8

’Split point graph ‘

Branches

Randomly sized
scheduling units

Optimization
within WCET and
migration cost

Uniformly sized
scheduling units

Boosting job-level migration by static analysis 9

Splitting Loops

Let the body untouched!

Original Loop

1 LOOP_Bound(x:10);
2 for(int i = 0; i < x; ++1i)

3 {....}

« Splitting the loop body?
« # of iterations dominates WCET

Boosting job-level migration by static analysis

10

Splitting Loops

Let the body untouched!

Original Loop

1 LOOP_Bound(x:10);
2 for(int i = 0; i < x; ++1i)

3 {....}

« Splitting the loop body?
« # of iterations dominates WCET

— Split by number of iterations!

Boosting job-level migration by static analysis

10

Splitting Loops Let the body untouched!

Original Loop Loop after Splitting
1 LOOP_Bound(x:10); 1int i =0, C = 5;
2 for(int i = 0; i < x; ++1i) 2 for(; i < x §5 C; ++1)
3 {....} 3 {--¢;}
4
- splitting the loop body? P
p g the loop body: 6 for(; i < x &5 C; ++1i)
« # of iterations dominates WCET 7{--C}

— Split by number of iterations!

General Approach
« Compute number of iterations to fit target WCET
+ Derive upper bound for the number of cuts
+ Duplicate body and adjust loop condition

Boosting job-level migration by static analysis 10

Splitting Branches The problem with conditional load ...

- 9 q
Scheduling Unit (SU) SU, cond
cond true false
Crrye=10 Cpavse =200 200
true false SPLIT
J
205 Crrue =160 | | Cpaps = 205 - 350
SU,
true false
Crryr = 150 Crase =35 150
exit
exit
L J J

Additional Pessimism Caused by Naive Splitting

+ Local optimization may lead to unbalanced cuts in branches
« Condition is unknown at compile time

— Overapproximation in timing analysis

Boosting job-level migration by static analysis 1

Splitting Branches

Original i f-then-else Subdivided i f-then-else
SUp
BB, N
SPLIT Global vs. Local Optimization
{BBy,| |BB3,| « Find suitable points locally
| EE—_— - | EE———_— .
+ Global alignment between branches
— Minimize size differences
SUp
{BBy,| [BBay|
_____ - | ES——
BBy

Boosting job-level migration by static analysis 12

Splitting Branches

Original i f-then-else Subdivided i f-then-else
SUp SUp
BB e
SPLIT Global vs. Local Optimization
{BBy,| |BB3,| « Find suitable points locally
i\-’l-}-]-s-l-/i + Global alignment between branches
i BBs | e
B — Minimize size differences
SUg General Approach
BBsJ « Add jump
ed N - Additional logic
{BBap| {BB3p /|
BBy

Boosting job-level migration by static analysis 12

Overheads per Cut How much is the fun?

Sequential Code

+
lgeq = 1

Boosting job-level migration by static analysis 13

Overheads per Cut How much is the fun?

Sequential Code

ity = 1
Branches
zj} = Npranch * 2 Marking the active branch
+ 1 Terminating the first scheduling unit
+ 3 Proceeding with the correct branch

Boosting job-level migration by static analysis 13

Overheads per Cut How much is the fun?

Sequential Code

ity = 1
Branches
Zj} = Npraneh * 2 Marking the active branch
+ 1 Terminating the first scheduling unit
+ 3 Proceeding with the correct branch
Loops
iy = (5 + 1) Counter for planned iterations
+ 2 Exiting the scheduling unit and resetting the iteration counter
+ 3 Executing the following part of the loop
i+

additional instructions
nyranch H# branches, affected by a horizontal cut

K2

Boosting job-level migration by static analysis 13

Overheads per Cut How much is the fun?

Sequential Code

ijeq =1
Branches
Zj} = Npraneh * 2 Marking the active branch
+ 1 i i
+ 3
+ Only few additional instructions for all
L?fps_ 5+ 1) different program constructs
b=
oor 19 = Mlnor effects on. overall execution tlme eration counter
+ 3 Executlng the followmg part of the loop
it # additional instructions
nyranch H# branches, affected by a horizontal cut

Boosting job-level migration by static analysis 13

Schedulability

schedulability =

3.5 3.6 3.7 3.8
utilization =

Boosting job-level migration by static analysis

= original system
mm split system

3.9 4.0

Effects on the schedulability of
systems with high utilization

Experimental Setup
 System with four processor cores

+ 12000 synthetic benchmark
systems

Goal

» Feasible allocation and schedule
for each task set

14

Schedulability

Effects on the schedulability of
systems with high utilization

= original system
mm split system

Experimental Setup

T, System with four processor cores
] + 12000 synthetic benchmark
3 systems
2
]
Goal
» Feasible allocation and schedule
35 36 37 38 39 40 for each task set

utilization =
= 70 percent more schedulable task
sets for the highest utilization

Boosting job-level migration by static analysis 14

Migration Costs

Finding split points with low migration cost

Experimental Setup
+ Real-world benchmarks taken from the TACLeBench suite
+ Creation of OSEK systems: one benchmark task and two load tasks

+ Generate systems which are unschedulable on two cores without migration
+ Only cut benchmark tasks

+ Recording of the resident-set size (in LLVM-IR types)

- Worst-case migration cost observed in all possible split-point candidates
+ Migration cost of the split point chosen by our approach

Boosting job-level migration by static analysis 15

Migration Costs

Benchmark Worst-case Resident-set Split-point Resident-set Cost improvement [bits]
Size [bits] Size [bits]
binarysearch 225 224 1
bitonic 65 64 1
complex_update 480 288 192
countnegative 2176 1568 608
filterbank 60736 60704 32
iir 432 400 32
insertsort YA 128 ;16
minver 17568 16 800 768
petrinet 5057 5056 1

Boosting job-level migration by static analysis 16

Migration Costs

Benchmark Worst-case Resident-set Split-point Resident-set Cost improvement [bits]
Size [bits] Size [bits]
binarysearch 225 224 1
bitonic 65 64 1
complex_update 480 288 192
countnegative 2176 1568 608
filterbank 60736 60 704 32
iir 432 400 32
insertsort 544 128 416
minver 17568 16 800 768
petrinet 5057 5056 1

= Lower worst-case migration overhead
= Tighter results from timing analysis

Boosting job-level migration by static analysis 16

Conclusion and Outlook

Conclusion

+ Compile time

« Beneficial size of scheduling units
= Systems with high utilization become schedulable

Boosting job-level migration by static analysis 17

Conclusion and Outlook

Conclusion

+ Compile time

« Beneficial size of scheduling units
= Systems with high utilization become schedulable

« Runtime

- Migration at beneficial points
* Only if necessary
= Reducing overapproximation in the WCET analysis

Boosting job-level migration by static analysis 17

Conclusion and Outlook

Conclusion

+ Compile time

« Beneficial size of scheduling units
= Systems with high utilization become schedulable

« Runtime

- Migration at beneficial points
* Only if necessary
= Reducing overapproximation in the WCET analysis

Current Work and Outlook

« More accurate WCET estimation
+ Adapt an OS to support migration threshold
+ Consider the OS and system calls within the analysis

Boosting job-level migration by static analysis 17

	Motivation
	Approach
	Evaluation
	Conclusion

